1.决策树

2.熵(不确定程度)

3.信息增益 & 信息增益比
3.1 信息增益 & 信息增益比 的 概念

3.2 案例解释说明
3.2.1数据集说明

3.2.2计算
4.CART(基尼指数)
主要针对于二分类问题
c
具体的细节可以参考:https://blog.csdn.net/qq_44795788/article/details/124675120?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170124340616800192220821%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=170124340616800192220821&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v1~rank_v31_ecpm-2-124675120-null-null.142^v96^pc_search_result_base5&utm_term=CART%E4%BF%A1%E8%B4%B7&spm=1018.2226.3001.4187