【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Counter篇)

前提概要

对于后台服务而言,除了保证每个功能的正常工作,我们还需要了解服务的运行情况,包括机器的物理性能(例如线程数、文件句柄数、内存占用大小、GC时间等)以及业务性能(例如关键流程通过率、QPS以及响应时间等)。目前,常用的做法是通过定义、收集和展示一系列指标(metrics)来完成对后台服务的监控。

监控工作可以分为四个部分

根据以下这四个部分,我们能够完成对后台服务的监控工作,从而能够及时了解和处理服务的运行情况,优化性能,提供更好的用户体验,并确保服务的可靠性和稳定性。

  • 定义监控数据的产生:我们需要明确定义要监控的数据,包括哪些指标和数据需要收集和监控,以满足监控需求。这可以包括硬件资源利用率、服务的核心性能指标、业务处理的成功率等。

  • 定义监控数据收集的规则:我们需要定义如何收集和存储监控数据。这可能涉及到在代码中嵌入采集指标的逻辑,使用监控代理或导入外部监控系统等方式。关键是确定监控数据的数据源,以及数据如何采集、存储和处理。

  • 数据监控数据的展现形式:需要将收集到的监控数据进行可视化展示,以便更好地理解和分析。这可以包括创建仪表盘、图表、报表或使用专业的监控系统来呈现监控数据,让监控数据更易于理解和分析。

  • 根据监控数据进行报警:根据监控数据设置报警规则,以便在出现异常情况时及时提醒相关人员。这可以通过阈值设置、异常模式识别或使用专业的报警系统来实现。及时的报警能够帮助快速响应和解决问题,确保服务的稳定性和可靠性。

监控开发任务

接下来将逐步介绍如何在Java服务中接入监控服务,我们将从监控数据的产生开始。在本文中,我们将主要基于当前流行的度量框架 codahale.metrics 来进行介绍。

通过引入此依赖项,您可以使用 codahale.metrics 框架中提供的各种功能和特性进行应用程序的度量和监控。

xml 复制代码
<dependencies>
    <dependency>
        <groupId>com.codahale.metrics</groupId>
        <artifactId>metrics-core</artifactId>
        <version>x.y.z</version>
    </dependency>
</dependencies>

在接下来我们将指导您如何使用 codahale.metrics 库来定义和收集监控数据,展示和分析指标,并根据数据设置报警规则等。codahale.metrics 提供了丰富的功能和灵活的API,可以轻松地与您的Java服务集成,帮助您监控和优化服务的性能、可靠性和稳定性。

Metrics中的基础数据类型

在谈论监控数据的产生时,我们首先需要了解监控库中最常用的三种数据类型,它们分别是:计数器(Counter)、量规(Gauge)和直方图(Histogram)。几乎所有的 Java 监控库都包含了这三种数据类型的实现。

计数器(Counter)

计数器用于记录一个累加值,它表示一个增加或减少的计数。可以通过 inc() 方法增加计数器的值,也可以通过 dec() 方法减少计数器的值。计数器可以用于统计请求次数、错误次数等离散的事件计数。

列举的三种需求场景,可以使用 com.codahale.metrics(或其他类似的监控库)中的不同数据类型来实现。

统计 API 访问中异常(1000/1500)的次数

使用计数器(Counter)来实现。在每次 API 请求中,当发生异常(如 400 或 500 错误)时,通过 inc() 方法将计数器值增加1。

java 复制代码
Counter apiErrorCounter = metricRegistry.counter("api.error.counter");
// 在 API 请求处理中,当发生异常时,调用以下代码
apiErrorCounter.inc();

统计 API 的调用量

使用计数器(Counter)来实现。在每次 API 请求时,通过 inc() 方法增加计数器的值。

java 复制代码
Counter apiCallCounter = metricRegistry.counter("api.call.counter");
// 在每个 API 请求处理中,调用以下代码
apiCallCounter.inc();

统计特定事件发生的次数

使用计数器(Counter)来记录特定事件发生的次数。在事件发生时,通过 inc() 方法将计数器值增加1。

java 复制代码
Counter eventCounter = metricRegistry.counter("event.counter");
// 在特定事件发生时,调用以下代码
eventCounter.inc();

以上示例展示了如何使用计数器来统计异常次数、API 调用量和特定事件发生的次数。可以根据具体需求给计数器命名并使用相应的记录代码。通过监控库提供的方法,可以简单快速地进行数据统计和监控,从而更好地了解和管理应用程序的行为。

Counter的底层原理

Counter 的底层实现主要通过(基础 (Base) 计数器)和(单元 (Cell) 数组)来保证自增的原子性和性能。

com.codahale.metrics.Counter 的源码中,每个 Counter 对象由两部分组成,这是一种称为 "Striped64" 的机制,它是针对高并发情况下的性能优化。

基础 (Base) 计数器

Base 计数器是一个 volatile long 类型的字段,用于存储计数器的初始值及其当前值。它用于低并发情况下对计数进行快速的自增和获取操作。

单元 (Cell) 数组

Cellvolatile long 类型的数组,每个单元内部维护一个计数器的增量值。为了处理高并发情况下的并发访问,Cell 数组采用了分段锁(CAS 操作)的方式,将计数器的自增操作分散到多个单元上。每个线程独占一个单元,当多个线程访问不同的单元时,它们之间不会发生竞争,可以保证并发访问时的性能。

简单的源码案例

通过这些策略和机制的组合,Counter 在具有竞争的情况下保持了较高的性能,同时也考虑了内存消耗的控制,使得其在高并发场景下能够有效地进行计数操作。

java 复制代码
public class Counter {
	transient volatile int busy;
	transient volatile long base;
	transient volatile Cell[] cells;
	public void inc(long n) {
		long b;
		if(cells == null || !casBase(b=base, b+n)) {
			//使用cells进行计算
		}
	}
	public long sum() {
		long sum = base;
		Cell[] as = cells;
		if (as != null) {
			int n = as.length;
		for (int i = 0; i < n; ++i) {
			Cell a = as[i];
			if (a != null)
				sum += a.value;
		}
	}	
		return sum;
	}
}

基本的执行流程图:

Counter分析总结

Counter 的底层实现使用了基础(Base)和单元(Cell)来存储计数值。在高并发情况下,线程会针对不同的 Cell 进行自增操作,从而避免了竞争,减少了资源争用。而在低并发情况下,通过直接对 Base 进行自增操作,避免了锁的开销,提高了性能,也保证了 Counter 的高性能和并发性能。 这种基于 BaseCell 的实现方式能够平衡高并发和低并发情况下的性能需求,确保了 Counter 的自增操作的原子性和并发性能。

从CPU和内存角度去分析资源开销

对于有竞争的情况,Counter 使用自旋锁来进行同步,这意味着线程会在一个忙等待的循环中等待竞争解决。这种自旋锁的方式避免了线程上下文切换的开销,并且消耗的 CPU 时间较少,从而提高了性能。

为了避免过多使用内存,当单元数组的数量超过 CPU 核心数时,Counter 将不再扩展单元数组的大小,而是保持不变。这样可以避免过多的内存消耗,并具有更好的性能。

相关推荐
uzong21 分钟前
软件架构指南 Software Architecture Guide
后端
又是忙碌的一天21 分钟前
SpringBoot 创建及登录、拦截器
java·spring boot·后端
勇哥java实战分享1 小时前
短信平台 Pro 版本 ,比开源版本更强大
后端
学历真的很重要1 小时前
LangChain V1.0 Context Engineering(上下文工程)详细指南
人工智能·后端·学习·语言模型·面试·职场和发展·langchain
计算机毕设VX:Fegn08951 小时前
计算机毕业设计|基于springboot + vue二手家电管理系统(源码+数据库+文档)
vue.js·spring boot·后端·课程设计
上进小菜猪2 小时前
基于 YOLOv8 的智能杂草检测识别实战 [目标检测完整源码]
后端
持续升级打怪中2 小时前
Vue3 中虚拟滚动与分页加载的实现原理与实践
前端·性能优化
小宇的天下2 小时前
Calibre 3Dstack Flow Example(5-2)
性能优化
韩师傅3 小时前
前端开发消亡史:AI也无法掩盖没有设计创造力的真相
前端·人工智能·后端
Tisfy3 小时前
网站访问耗时优化 - 从数十秒到几百毫秒的“零成本”优化过程
服务器·开发语言·性能优化·php·网站·建站