opencv知识库:cv2.add()函数和“+”号运算符

需求场景

现有一灰度图像,需求是为该图像增加亮度。

原始灰度图像

预期目标图像

解决方案

不建议的方案------"+"运算符

假设我们需要为原始灰度图像的亮度整体提升88,那么利用"+"运算符的源码如下:

python 复制代码
import cv2

img_path = r"D:\pycharmproject\python_project\lena.jpg"
img = cv2.imread(img_path, 0) # 以灰度图像格式读取图像
l_value = 88 # 欲增加的亮度值
img = img + l_value # 利用"+"运算符进行亮度增强操作
cv2.imshow('lena', img)
cv2.waitKey(0)

运行结果

从结果可以看出,某些区域的亮度比【增强亮度前】更低

原因分析

由于cv2.imread()函数读取图像的数据格式是无符号8位整数(uint8) ,所以其数值范围是[0,255]。当应用"+"号运算符为原图增强亮度时,"+"的运算逻辑如下:
a + b = { a + b , a + b ≤ 255 m o d ( a + b , 256 ) , a + b > 255 (1) a + b= \begin{cases} a+b,\quad a+b\leq 255\\ mod(a+b, 256), \quad a+b>255 \end{cases} \tag{1} a+b={a+b,a+b≤255mod(a+b,256),a+b>255(1)

即如果原图某个像素值a=200,而欲增强的亮度值为b=88,则"+"的运算结果并不是a + b = 288, 而是288 % 256 = 32(可以利用a的数据格式是uint8的信息协助理解)

建议的方案------cv2.add()方法

源码如下:

python 复制代码
import cv2

img_path = r"D:\pycharmproject\python_project\lena.jpg"
img = cv2.imread(img_path, 0) # 以灰度图像格式读取图像
l_value = 88 # 欲增加的亮度值
img = cv2.add(img, l_value) # 利用cv2.add()方法进行亮度增强操作
cv2.imshow('lena', img)
cv2.waitKey(0)

运行结果

从结果来看,没有出现某些区域的亮度比【增强亮度前】更低的现象。

结果分析

当应用cv2.add()方法为原图增强亮度时,其运算逻辑如下:
a + b = { a + b , a + b ≤ 255 255 , a + b > 255 (1) a + b= \begin{cases} a+b,\quad a+b\leq 255\\ 255, \quad a+b>255 \end{cases} \tag{1} a+b={a+b,a+b≤255255,a+b>255(1)

即如果原图某个像素值a=200,而欲增强的亮度值为b=88,则cv2.add()方法的运算结果并不是a + b = 288, 而是255(相加结果超过255,一律取255)。

小结

经过上述分析,当需要对一张图像进行亮度增强或者对两幅图像进行叠加操作时,相比于"+"运行符,cv2.add()方法是更为安全的方案。

相关推荐
浠寒AI1 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154462 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me072 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao2 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算2 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装3 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs801403 小时前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag
music&movie3 小时前
算法工程师认知水平要求总结
人工智能·算法
量子位4 小时前
苹果炮轰推理模型全是假思考!4 个游戏戳破神话,o3/DeepSeek 高难度全崩溃
人工智能·deepseek
黑鹿0224 小时前
机器学习基础(四) 决策树
人工智能·决策树·机器学习