opencv知识库:cv2.add()函数和“+”号运算符

需求场景

现有一灰度图像,需求是为该图像增加亮度。

原始灰度图像

预期目标图像

解决方案

不建议的方案------"+"运算符

假设我们需要为原始灰度图像的亮度整体提升88,那么利用"+"运算符的源码如下:

python 复制代码
import cv2

img_path = r"D:\pycharmproject\python_project\lena.jpg"
img = cv2.imread(img_path, 0) # 以灰度图像格式读取图像
l_value = 88 # 欲增加的亮度值
img = img + l_value # 利用"+"运算符进行亮度增强操作
cv2.imshow('lena', img)
cv2.waitKey(0)

运行结果

从结果可以看出,某些区域的亮度比【增强亮度前】更低

原因分析

由于cv2.imread()函数读取图像的数据格式是无符号8位整数(uint8) ,所以其数值范围是[0,255]。当应用"+"号运算符为原图增强亮度时,"+"的运算逻辑如下:
a + b = { a + b , a + b ≤ 255 m o d ( a + b , 256 ) , a + b > 255 (1) a + b= \begin{cases} a+b,\quad a+b\leq 255\\ mod(a+b, 256), \quad a+b>255 \end{cases} \tag{1} a+b={a+b,a+b≤255mod(a+b,256),a+b>255(1)

即如果原图某个像素值a=200,而欲增强的亮度值为b=88,则"+"的运算结果并不是a + b = 288, 而是288 % 256 = 32(可以利用a的数据格式是uint8的信息协助理解)

建议的方案------cv2.add()方法

源码如下:

python 复制代码
import cv2

img_path = r"D:\pycharmproject\python_project\lena.jpg"
img = cv2.imread(img_path, 0) # 以灰度图像格式读取图像
l_value = 88 # 欲增加的亮度值
img = cv2.add(img, l_value) # 利用cv2.add()方法进行亮度增强操作
cv2.imshow('lena', img)
cv2.waitKey(0)

运行结果

从结果来看,没有出现某些区域的亮度比【增强亮度前】更低的现象。

结果分析

当应用cv2.add()方法为原图增强亮度时,其运算逻辑如下:
a + b = { a + b , a + b ≤ 255 255 , a + b > 255 (1) a + b= \begin{cases} a+b,\quad a+b\leq 255\\ 255, \quad a+b>255 \end{cases} \tag{1} a+b={a+b,a+b≤255255,a+b>255(1)

即如果原图某个像素值a=200,而欲增强的亮度值为b=88,则cv2.add()方法的运算结果并不是a + b = 288, 而是255(相加结果超过255,一律取255)。

小结

经过上述分析,当需要对一张图像进行亮度增强或者对两幅图像进行叠加操作时,相比于"+"运行符,cv2.add()方法是更为安全的方案。

相关推荐
飞哥数智坊10 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三10 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯11 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet13 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算13 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心13 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar14 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai14 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI15 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear16 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp