讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用于聚类分析的无监督学习算法。其基本思想是将数据集分成 K 个不同的簇,使得同一个簇内的数据点之间的距离尽可能小,不同簇之间的距离尽可能大。其主要流程如下:

  1. 随机选择 K 个数据点作为初始簇中心;
  2. 对于每个数据点,计算其到 K 个簇中心的距离,并将其归为距离最近的簇;
  3. 计算每个簇内数据点的均值作为新的簇中心;
  4. 重复步骤 2、3 直到簇中心不再改变或达到预设的迭代次数。

K-均值聚类算法的优点包括:

  1. 实现简单,易于理解和实现;
  2. 对于大规模数据集,具有较高的计算效率;
  3. 适用于数据集中簇的数量已知或可以通过其他方法估计得出的情况。

其缺点包括:

  1. 对于不同形状、密度和大小的簇,聚类效果可能较差;
  2. 对于含有离群值的数据集,容易受到影响;
  3. 对于簇中心的选择敏感,初始值的不同可能导致聚类结果不同。

因此,在实际应用中,需要根据具体情况选择合适的聚类算法和参数。

相关推荐
SweetCode3 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
程序员Linc15 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh23 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能27 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820936 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能37 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
databook37 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
碳基学AI42 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
果冻人工智能1 小时前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能