讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用于聚类分析的无监督学习算法。其基本思想是将数据集分成 K 个不同的簇,使得同一个簇内的数据点之间的距离尽可能小,不同簇之间的距离尽可能大。其主要流程如下:

  1. 随机选择 K 个数据点作为初始簇中心;
  2. 对于每个数据点,计算其到 K 个簇中心的距离,并将其归为距离最近的簇;
  3. 计算每个簇内数据点的均值作为新的簇中心;
  4. 重复步骤 2、3 直到簇中心不再改变或达到预设的迭代次数。

K-均值聚类算法的优点包括:

  1. 实现简单,易于理解和实现;
  2. 对于大规模数据集,具有较高的计算效率;
  3. 适用于数据集中簇的数量已知或可以通过其他方法估计得出的情况。

其缺点包括:

  1. 对于不同形状、密度和大小的簇,聚类效果可能较差;
  2. 对于含有离群值的数据集,容易受到影响;
  3. 对于簇中心的选择敏感,初始值的不同可能导致聚类结果不同。

因此,在实际应用中,需要根据具体情况选择合适的聚类算法和参数。

相关推荐
Allen正心正念20251 分钟前
AWS专家Greg Coquillo提出的8层Agentic AI架构分析
人工智能·架构·aws
JoannaJuanCV3 分钟前
自动驾驶—CARLA仿真(25)synchronous_mode demo
人工智能·机器学习·自动驾驶·carla
骚戴5 分钟前
大语言模型(LLM)进阶:从闭源大模型 API 到开源大模型本地部署,四种接入路径全解析
java·人工智能·python·语言模型·自然语言处理·llm·开源大模型
audyxiao00112 分钟前
如何降低对标注数据的依赖,实现多病种检测与病灶精准定位?请看此文
人工智能·多病种检测·病灶精准定位·医学影像ai
鲨莎分不晴13 分钟前
强化学习第七课 —— 策略网络设计指南:赋予 Agent“大脑”的艺术
网络·人工智能·机器学习
志凌海纳SmartX18 分钟前
AI知识科普丨什么是 AI Agent?
人工智能
RockHopper202519 分钟前
认知导向即面向服务——规避未来AI发展路径上的拟人化陷阱
人工智能·认知导向·xai 可解释人工智能
神算大模型APi--天枢64622 分钟前
全栈自主可控:国产算力平台重塑大模型后端开发与部署生态
大数据·前端·人工智能·架构·硬件架构
@鱼香肉丝没有鱼22 分钟前
Transformer底层原理—位置编码
人工智能·深度学习·transformer·位置编码
yiersansiwu123d26 分钟前
AI大模型的进化与平衡:在技术突破与伦理治理中前行
人工智能