讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用于聚类分析的无监督学习算法。其基本思想是将数据集分成 K 个不同的簇,使得同一个簇内的数据点之间的距离尽可能小,不同簇之间的距离尽可能大。其主要流程如下:

  1. 随机选择 K 个数据点作为初始簇中心;
  2. 对于每个数据点,计算其到 K 个簇中心的距离,并将其归为距离最近的簇;
  3. 计算每个簇内数据点的均值作为新的簇中心;
  4. 重复步骤 2、3 直到簇中心不再改变或达到预设的迭代次数。

K-均值聚类算法的优点包括:

  1. 实现简单,易于理解和实现;
  2. 对于大规模数据集,具有较高的计算效率;
  3. 适用于数据集中簇的数量已知或可以通过其他方法估计得出的情况。

其缺点包括:

  1. 对于不同形状、密度和大小的簇,聚类效果可能较差;
  2. 对于含有离群值的数据集,容易受到影响;
  3. 对于簇中心的选择敏感,初始值的不同可能导致聚类结果不同。

因此,在实际应用中,需要根据具体情况选择合适的聚类算法和参数。

相关推荐
阿坡RPA2 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049932 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心2 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI4 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c5 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2055 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清5 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh6 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员6 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物6 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技