聊聊 神经网络模型 传播计算逻辑

概述

预训练过程就是在不断地更新权重超参数与偏置超参数,最后选择合适的超参数,生成超参数文件。上一篇博客 是使用已有的预训练超参数文件,要训练自己的超参数,需要对神经网络层中前向传播与反向传播计算熟悉,了解计算逻辑,才能不断地更新选择合适的超参数。

神经网络计算详解

整个神经网络的层数是4层,从顺序来分别是:输入层,两层隐藏层,输出层。隐藏层的激活函数选择sigmoid函数;输出层用softmax函数归一化处理。

神经网络的各层参数和激活函数符号化如下:

  • 输入层:(x)
  • 第一个隐藏层:()
  • 第二个隐藏层:()
  • 输出层:(y)
  • 权重参数:()
  • 偏置参数:()
  • 激活函数:() (例如,Sigmoid、ReLU)
  • 损失函数:(L)

为简化推导,假设使用平方损失函数 (),其中 () 为真实标签。

前向传播

前向传播过程如下:

  1. 输入层到第一个隐藏层:
  2. 第一个隐藏层到第二个隐藏层:
  3. 第二个隐藏层到输出层:

接下来计算反向传播的过程,反向传播的计算过程基于链式法则,目的是计算损失函数相对于网络参数(权重和偏置)的梯度。

图文并茂可以阅读 聊聊神经网络的基础知识

反向传播

损失函数对输出层输出的梯度

对于平方损失函数:

损失函数对输出层输入的梯度

记输出层的输入为

根据链式法则:

=>

这里 是激活函数 的导数。比如,如果使用 Sigmoid 激活函数,那么

损失函数对输出层超参数的梯度



=>=

第二个隐藏层,损失函数对输入的梯度

根据链式求导法则:

由上可知,

其中是输出层的参数矩阵, 是向量。我们想要计算 的导数。

我们对 求导数,由于 不包含 ,它们在导数中变为零:

由于第二项为零。只需要计算第一项:

这里 是矩阵, 是向量。使用矩阵微积分规则:

所以,导数 ,其中 的转置矩阵。

最终, 的导数是

=>

第二个隐藏层,损失函数权重和偏置的梯度

根据上述计算逻辑,可以很方便的推出,损失函数对超参数的梯度为

第一个隐藏层,损失函数对输入,超参数的梯度

损失函数对输入的梯度为

损失函数对超参数的梯度为

这样就完成了反向传播的输入、超参数计算过程。这些梯度的计算用于以更新神经网络的权重和偏置。

超参数的更新

上述已计算出来了超参数的梯度,现在用于更新神经网络的超参数,以输出层的权重超参数更新为例;其公式为:

其中 为学习率,的值在上述已计算出来了,直接替换即可。

相关推荐
Yeats_Liao7 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
Blossom.1189 小时前
AI Agent智能办公助手:从ChatGPT到真正“干活“的系统
人工智能·分布式·python·深度学习·神经网络·chatgpt·迁移学习
AI即插即用12 小时前
即插即用系列 | CVPR 2025 MK-UNet: 多核深度可分离卷积,重新定义轻量级医学图像分割
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
flying_131415 小时前
图神经网络分享系列-GGNN(GATED GRAPH SEQUENCE NEURAL NETWORKS)(一)
人工智能·深度学习·神经网络·图神经网络·ggnn·门控机制·图特征学习
赋创小助手16 小时前
超微2U高密度服务器AS-2126HS-TN评测(双AMD EPYC 9005 Turin)
运维·服务器·人工智能·深度学习·神经网络·自然语言处理·架构
前进的李工16 小时前
深度解析:词向量与自注意力机制
深度学习·神经网络·cnn·位置编码·自注意力
肥猪猪爸17 小时前
NLP中BIO标签浅析
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
数智工坊18 小时前
【MobileVIT论文解读】打破 CNN 与 ViT 壁垒:MobileViT 如何重塑移动端视觉模型?
人工智能·神经网络·cnn
sunfove18 小时前
拥抱不确定性:使用 PyTorch 构建贝叶斯神经网络 (BNN)
人工智能·pytorch·神经网络
一招定胜负18 小时前
仅通过提示词用豆包实现项目:爬虫+神经网络对目标图片分类
爬虫·神经网络·分类