聊聊 神经网络模型 传播计算逻辑

概述

预训练过程就是在不断地更新权重超参数与偏置超参数,最后选择合适的超参数,生成超参数文件。上一篇博客 是使用已有的预训练超参数文件,要训练自己的超参数,需要对神经网络层中前向传播与反向传播计算熟悉,了解计算逻辑,才能不断地更新选择合适的超参数。

神经网络计算详解

整个神经网络的层数是4层,从顺序来分别是:输入层,两层隐藏层,输出层。隐藏层的激活函数选择sigmoid函数;输出层用softmax函数归一化处理。

神经网络的各层参数和激活函数符号化如下:

  • 输入层:(x)
  • 第一个隐藏层:()
  • 第二个隐藏层:()
  • 输出层:(y)
  • 权重参数:()
  • 偏置参数:()
  • 激活函数:() (例如,Sigmoid、ReLU)
  • 损失函数:(L)

为简化推导,假设使用平方损失函数 (),其中 () 为真实标签。

前向传播

前向传播过程如下:

  1. 输入层到第一个隐藏层:
  2. 第一个隐藏层到第二个隐藏层:
  3. 第二个隐藏层到输出层:

接下来计算反向传播的过程,反向传播的计算过程基于链式法则,目的是计算损失函数相对于网络参数(权重和偏置)的梯度。

图文并茂可以阅读 聊聊神经网络的基础知识

反向传播

损失函数对输出层输出的梯度

对于平方损失函数:

损失函数对输出层输入的梯度

记输出层的输入为

根据链式法则:

=>

这里 是激活函数 的导数。比如,如果使用 Sigmoid 激活函数,那么

损失函数对输出层超参数的梯度



=>=

第二个隐藏层,损失函数对输入的梯度

根据链式求导法则:

由上可知,

其中是输出层的参数矩阵, 是向量。我们想要计算 的导数。

我们对 求导数,由于 不包含 ,它们在导数中变为零:

由于第二项为零。只需要计算第一项:

这里 是矩阵, 是向量。使用矩阵微积分规则:

所以,导数 ,其中 的转置矩阵。

最终, 的导数是

=>

第二个隐藏层,损失函数权重和偏置的梯度

根据上述计算逻辑,可以很方便的推出,损失函数对超参数的梯度为

第一个隐藏层,损失函数对输入,超参数的梯度

损失函数对输入的梯度为

损失函数对超参数的梯度为

这样就完成了反向传播的输入、超参数计算过程。这些梯度的计算用于以更新神经网络的权重和偏置。

超参数的更新

上述已计算出来了超参数的梯度,现在用于更新神经网络的超参数,以输出层的权重超参数更新为例;其公式为:

其中 为学习率,的值在上述已计算出来了,直接替换即可。

相关推荐
Q同学42 分钟前
Qwen3开源最新Embedding模型
深度学习·神经网络·llm
红衣小蛇妖3 小时前
神经网络-Day46
人工智能·深度学习·神经网络
Blossom.1188 小时前
使用Python和OpenCV实现图像识别与目标检测
人工智能·python·神经网络·opencv·安全·目标检测·机器学习
蹦蹦跳跳真可爱5899 小时前
Python----目标检测(《YOLOv3:AnIncrementalImprovement》和YOLO-V3的原理与网络结构)
人工智能·python·深度学习·神经网络·yolo·目标检测·目标跟踪
程序员老周66610 小时前
4.大语言模型预备数学知识
人工智能·神经网络·线性代数·自然语言处理·大语言模型·概率论·数学基础
Coovally AI模型快速验证10 小时前
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
人工智能·神经网络·yolo·目标检测·无人机·cocos2d
西西弗Sisyphus11 小时前
Qwen2.5-VL - FFN(前馈神经网络)Feedforward Neural Network
人工智能·深度学习·神经网络·qwen
QBoson12 小时前
量子计算+AI:特征选择与神经网络优化创新应用
人工智能·神经网络·量子计算·图像分类·特征选择·“五岳杯”量子计算挑战赛·相干光量子计算机
狂小虎20 小时前
02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
深度学习·神经网络·逻辑回归
猫天意21 小时前
【深度学习】为什么2个3×3的卷积可以相当于一个5×5的卷积核?为什么3个3×3的卷积相当于一个7×7的卷积核,到底区别在哪里?我们该如何使用?
人工智能·深度学习·神经网络·目标检测·视觉检测