深度学习-模型调试经验总结

1、
这句话的意思是:期望张量的后端处理是在cpu上,但是实际是在cuda上。排查代码发现,数据还在cpu上,但是模型已经转到cuda上,所以可以通过把数据转到cuda上解决。

解决代码:

python 复制代码
tensor.to("cuda")

2、
解决方法:减小batch size的大小或减小图片的尺寸

3、

原始的代码如下:

python 复制代码
torch.save(model.module.state_dict(), os.path.join(model_prefix, '{}-model.pth'.format(epoch)))

原因:因为只有一块GPU,以上代码是多GPU使用的

解决方法:改为以下单GPU代码:

python 复制代码
        meta = {}
        checkpoint = {"meta": meta, "state_dict": weights_to_cpu(model.state_dict())}
        if optimizer is not None:
            checkpoint["optimizer"] = optimizer.state_dict()
        torch.save(checkpoint, os.path.join(model_prefix, '{}-model.pth'.format(epoch)))

4、原始代码:

python 复制代码
base_net.load_state_dict(torch.load(pretrain_model, map_location='cpu'))

原因:模型参数文件是保存在了state_dict中,所以后面要加

解决方法:改成以下代码:

python 复制代码
base_net.load_state_dict(torch.load(pretrain_model, map_location='cpu')["state_dict"])
相关推荐
づ安眠丶乐灬20 小时前
计算机视觉中的多视图几何 - 1
人工智能·vscode·计算机视觉
2503_9284115620 小时前
项目中的一些问题(补充)
人工智能·python·tensorflow
MarkHD20 小时前
智能体在车联网中的应用 第1天 车联网完全导论:从核心定义到架构全景,构建你的知识坐标系
人工智能·架构
中科米堆20 小时前
塑料制品企业部署自动化三维扫描仪设备,解决注塑件变形问题-中科米堆CASAIM
人工智能
星图云20 小时前
从数据累积到精准解析:AI解译打造遥感数据高效利用新范式
人工智能·卫星遥感
飞哥数智坊20 小时前
AI 大厂的“护城河”,也会成为它们的束缚
人工智能·创业
BB_CC_DD21 小时前
超简单搭建AI去水印和图像修复算法lama-cleaner二
人工智能·深度学习
珠海西格电力21 小时前
零碳园区物流园区架构协同方案
人工智能·物联网·架构·能源
向成科技21 小时前
新品 | 向成电子XC3576M小体积主板,全面适配国产麒麟操作系统
人工智能·ai·解决方案·硬件·国产操作系统·麒麟系统·主板