深度学习-模型调试经验总结

1、
这句话的意思是:期望张量的后端处理是在cpu上,但是实际是在cuda上。排查代码发现,数据还在cpu上,但是模型已经转到cuda上,所以可以通过把数据转到cuda上解决。

解决代码:

python 复制代码
tensor.to("cuda")

2、
解决方法:减小batch size的大小或减小图片的尺寸

3、

原始的代码如下:

python 复制代码
torch.save(model.module.state_dict(), os.path.join(model_prefix, '{}-model.pth'.format(epoch)))

原因:因为只有一块GPU,以上代码是多GPU使用的

解决方法:改为以下单GPU代码:

python 复制代码
        meta = {}
        checkpoint = {"meta": meta, "state_dict": weights_to_cpu(model.state_dict())}
        if optimizer is not None:
            checkpoint["optimizer"] = optimizer.state_dict()
        torch.save(checkpoint, os.path.join(model_prefix, '{}-model.pth'.format(epoch)))

4、原始代码:

python 复制代码
base_net.load_state_dict(torch.load(pretrain_model, map_location='cpu'))

原因:模型参数文件是保存在了state_dict中,所以后面要加

解决方法:改成以下代码:

python 复制代码
base_net.load_state_dict(torch.load(pretrain_model, map_location='cpu')["state_dict"])
相关推荐
杰夫贾维斯8 分钟前
CentOS Linux 8 的系统部署 Qwen2.5-7B -Instruct-AWQ
linux·运维·人工智能·机器学习·centos
m0_703323678 分钟前
SEO外包服务甄选指南:避开陷阱,精准匹配
大数据·人工智能
金智维科技15 分钟前
多系统、跨流程、高重复?看烟草企业如何用数字员工撬动运营变革
人工智能
PyAIExplorer25 分钟前
图像处理中的边缘填充:原理与实践
图像处理·人工智能
AI大模型技术社36 分钟前
🔥企业级必读:筛选高可用MCP服务的黄金标准
人工智能·mcp
zzywxc78742 分钟前
AI技术通过提示词工程(Prompt Engineering)正在深度重塑职场生态和行业格局,这种变革不仅体现在效率提升,更在重构人机协作模式。
java·大数据·开发语言·人工智能·spring·重构·prompt
Java中文社群1 小时前
炸裂!Dify新版发布:内置MCP双向支持!
人工智能·后端
金智维科技1 小时前
智能化财务管理如何简化审批流程?
人工智能
HollowKnightZ1 小时前
论文阅读笔记:VI-Net: Boosting Category-level 6D Object Pose Estimation
人工智能·深度学习·计算机视觉
野豹商业评论1 小时前
拼多多正在错失即时零售?
人工智能·零售