大语言模型有那些能力和应用

目录

能力

应用


能力

  1. 理解语义的能力:LLM 具有强大的语义理解能力,能够理解大部分文本,包括不同语言(人类语言或计算机语言)和表达水平的文本,即使是多语言混杂、语法用词错误,也在多数情况下可以理解用户的提问。

  2. 逻辑推理的能力:LLM 具有一定的逻辑推理能力,无需额外增加任何特殊提示词,就能做出简单的推理,并挖掘出问题的深层内容。在补充了一定的提示词后,LLM 可以展现更强的推理能力,这些提示词的方法包括:Few-ShotChain-of-Thought(COT)Self-ConsistencyTree-of-Thought(TOT) 等等。

  3. 尝试回答所有问题的能力:特别是 Chat 类型的 LLM,如 GPT-3.5,GPT-4,会尝试以对话形式,回答用户的所有问题,就算是回答 "我不能回答这个信息"。

  4. 通用知识的能力:LLM 本身拥有海量的通用知识,这些通用知识准确度较高,覆盖范围广泛。

  5. 多轮对话的能力:LLM 可以根据设定好的角色,理解不同角色之间的多次对话的含义,这意味着可以在对话中采用追问形式,而不是每一次对话都要把历史所有的关键信息都重复一遍。

应用

  • 文案写作

  • 知识库回答(问答)

  • 文本分类

  • 代码生成

  • 文本生成

  • 图片生成

  • 图片识别

  • 情感分析

  • 信息检索

相关推荐
乾元3 分钟前
拒绝服务的进化:AI 调度下的分布式协同攻击策略
人工智能·分布式
困死,根本不会4 分钟前
OpenCV摄像头实时处理:从单特征到联合识别(形状识别 + 颜色识别 + 形状颜色联合识别)
人工智能·opencv·计算机视觉
工具人呵呵5 分钟前
[嵌入式AI从0开始到入土]22_基于昇腾310P RC模式的ACT模型部署实践
人工智能
yj_sharing6 分钟前
PyTorch深度学习实战:从模型构建到训练技巧
人工智能·pytorch·深度学习
安全二次方security²7 分钟前
CUDA C++编程指南(7.31&32&33&34)——C++语言扩展之性能分析计数器函数和断言、陷阱、断点函数
c++·人工智能·nvidia·cuda·断点·断言·性能分析计数器函数
bksheng9 分钟前
【Dify】安装与部署
人工智能
狸奴算君9 分钟前
告别数据泄露:三步构建企业级AI的隐私保护盾
人工智能
Christo316 分钟前
TKDE-2026《Efficient Co-Clustering via Bipartite Graph Factorization》
人工智能·算法·机器学习·数据挖掘
jackylzh16 分钟前
PyTorch 2.x 中 `torch.load` 的 `FutureWarning` 与 `weights_only=False` 参数分析
人工智能·pytorch·python
子夜江寒22 分钟前
基于PyTorch的语言模型实现详解
pytorch·语言模型