LLM-Intro to Large Language Models

LLM

some LLM's model and weight are not opened to user

what is?

Llama 270b model

  • 2 files

    • parameters file
      • parameter or weight of neural network
      • parameter -- 2bytes, float number
    • code run parameters(inference)
      • c or python, etc
      • for c, 500 lines code without dependency to run
      • self contained package(no network need)
  • how to get parameters?

    • lossy compress large chunk of text (10TB) with 6000 GPU for 12 days (cost 200$) to 140G zip file(gestalt of the text, weights and parameters)
  • what neural do is trying to predict the next word in a sequence. parameters are dispersed throughout the neural network and neurons are connected to each other, fire in a certain way

  • prediction has strong relationship with compression

  • LLM create a correct form of text and fill it with its knowedge. not create a copy of text that was be trained.

  • how does it work?


training stage

  • pre-training

    • expensive
    • base model. get a document generator model
    • it's about knowledge
    • internet documents
  • fine tuning

    • cheaper
    • assistant model. get a assistant model
    • it's about alighment
    • Q&A document
    • training with high quality conversation(question and answer).write labeling instructions to specify how assistant should behave
    • focus on quality not amount
  • stage 3(optional)

    • use comparison label
    • reenforcement learning from human feedback
  • labeling is a human-machine collaboration
  • rank of LLM

LLM scaling laws:

  • more D and N will get better model
  • multimodality. now some LLM like GPT can use different tools to help it with answering questions. browser, calculator, python interpreter.

  • future directions of development in LLM

give LLM system 2 ablility


  • LLM now only have system one(instinctive)
  • convert time to accuracy

self-improvement

  • in narrow domain it is possible to self-improve

customization

experts in certain domain

future of LLM

相关推荐
慢半拍iii6 分钟前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai
User_芊芊君子19 分钟前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
小白|22 分钟前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
艾莉丝努力练剑30 分钟前
hixl vs NCCL:昇腾生态通信库的独特优势分析
运维·c++·人工智能·cann
梦帮科技31 分钟前
Node.js配置生成器CLI工具开发实战
前端·人工智能·windows·前端框架·node.js·json
程序员泠零澪回家种桔子32 分钟前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
Echo_NGC223735 分钟前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率
纤纡.1 小时前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
大大大反派1 小时前
CANN 生态中的自动化部署引擎:深入 `mindx-sdk` 项目构建端到端 AI 应用
运维·人工智能·自动化
程序猿追1 小时前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能