LLM-Intro to Large Language Models

LLM

some LLM's model and weight are not opened to user

what is?

Llama 270b model

  • 2 files

    • parameters file
      • parameter or weight of neural network
      • parameter -- 2bytes, float number
    • code run parameters(inference)
      • c or python, etc
      • for c, 500 lines code without dependency to run
      • self contained package(no network need)
  • how to get parameters?

    • lossy compress large chunk of text (10TB) with 6000 GPU for 12 days (cost 200$) to 140G zip file(gestalt of the text, weights and parameters)
  • what neural do is trying to predict the next word in a sequence. parameters are dispersed throughout the neural network and neurons are connected to each other, fire in a certain way

  • prediction has strong relationship with compression

  • LLM create a correct form of text and fill it with its knowedge. not create a copy of text that was be trained.

  • how does it work?


training stage

  • pre-training

    • expensive
    • base model. get a document generator model
    • it's about knowledge
    • internet documents
  • fine tuning

    • cheaper
    • assistant model. get a assistant model
    • it's about alighment
    • Q&A document
    • training with high quality conversation(question and answer).write labeling instructions to specify how assistant should behave
    • focus on quality not amount
  • stage 3(optional)

    • use comparison label
    • reenforcement learning from human feedback
  • labeling is a human-machine collaboration
  • rank of LLM

LLM scaling laws:

  • more D and N will get better model
  • multimodality. now some LLM like GPT can use different tools to help it with answering questions. browser, calculator, python interpreter.

  • future directions of development in LLM

give LLM system 2 ablility


  • LLM now only have system one(instinctive)
  • convert time to accuracy

self-improvement

  • in narrow domain it is possible to self-improve

customization

experts in certain domain

future of LLM

相关推荐
AI即插即用3 分钟前
即插即用系列(代码实践)专栏介绍
开发语言·人工智能·深度学习·计算机视觉
Keep__Fighting7 分钟前
【神经网络的训练策略选取】
人工智能·深度学习·神经网络·算法
抠头专注python环境配置35 分钟前
解决Windows安装PythonOCC报错:从“No module named ‘OCC’ ”到一键成功
人工智能·windows·python·3d·cad·pythonocc
2501_9413220335 分钟前
计算机视觉实现火灾与烟雾实时监测系统
人工智能·计算机视觉
xiaobaishuoAI35 分钟前
分布式事务实战(Seata 版):解决分布式系统数据一致性问题(含代码教学)
大数据·人工智能·分布式·深度学习·wpf·geo
2501_9421917738 分钟前
【深度学习实战】数字仪表字符识别项目详解——基于YOLO11-HAFB-2模型的优化实现
人工智能·深度学习
Bruce-XIAO39 分钟前
数据标注方法
人工智能·nlp
Where-1 小时前
深度学习中的过拟合问题及解决方式
人工智能·深度学习
wen__xvn1 小时前
目标检测的局限
人工智能·目标检测·计算机视觉
力学与人工智能1 小时前
博士答辩PPT分享 | 高雷诺数湍流场数据同化与湍流模型机器学习研究
人工智能·机器学习·ppt分享·高雷诺数·流场数据同化·湍流模型