LLM-Intro to Large Language Models

LLM

some LLM's model and weight are not opened to user

what is?

Llama 270b model

  • 2 files

    • parameters file
      • parameter or weight of neural network
      • parameter -- 2bytes, float number
    • code run parameters(inference)
      • c or python, etc
      • for c, 500 lines code without dependency to run
      • self contained package(no network need)
  • how to get parameters?

    • lossy compress large chunk of text (10TB) with 6000 GPU for 12 days (cost 200$) to 140G zip file(gestalt of the text, weights and parameters)
  • what neural do is trying to predict the next word in a sequence. parameters are dispersed throughout the neural network and neurons are connected to each other, fire in a certain way

  • prediction has strong relationship with compression

  • LLM create a correct form of text and fill it with its knowedge. not create a copy of text that was be trained.

  • how does it work?


training stage

  • pre-training

    • expensive
    • base model. get a document generator model
    • it's about knowledge
    • internet documents
  • fine tuning

    • cheaper
    • assistant model. get a assistant model
    • it's about alighment
    • Q&A document
    • training with high quality conversation(question and answer).write labeling instructions to specify how assistant should behave
    • focus on quality not amount
  • stage 3(optional)

    • use comparison label
    • reenforcement learning from human feedback
  • labeling is a human-machine collaboration
  • rank of LLM

LLM scaling laws:

  • more D and N will get better model
  • multimodality. now some LLM like GPT can use different tools to help it with answering questions. browser, calculator, python interpreter.

  • future directions of development in LLM

give LLM system 2 ablility


  • LLM now only have system one(instinctive)
  • convert time to accuracy

self-improvement

  • in narrow domain it is possible to self-improve

customization

experts in certain domain

future of LLM

相关推荐
MiaoChuAI3 分钟前
豆包AI PPT与秒出PPT对比评测:谁更适合你?
人工智能·powerpoint
%KT%21 分钟前
简单聊聊多模态大语言模型MLLM
人工智能·语言模型·自然语言处理
唐某人丶29 分钟前
教你如何用 JS 实现一个 Agent 系统(1)—— 认识 Agentic System
前端·人工智能
泡泡茶壶_ovo36 分钟前
RORPCAP: retrieval-based objects and relations prompt for image captioning
人工智能·深度学习·计算机视觉·语言模型·prompt·多模态·imagecaptioning
MaxCode-140 分钟前
单智能体篇:Prompt工程艺术
大数据·人工智能·prompt
小鹿的工作手帐1 小时前
有鹿机器人:智慧清洁新时代的引领者
人工智能·科技·机器人
这张生成的图像能检测吗1 小时前
(论文速读)Logits DeConfusion-CLIP少样本学习
人工智能·计算机视觉·图像分类·clip
居然JuRan2 小时前
RAG系统开发中的12大痛点及应对策略
人工智能
sinat_286945192 小时前
AI服务器介绍
服务器·人工智能·算法·chatgpt·transformer
Kusunoki_D2 小时前
PyTorch 环境配置
人工智能·pytorch·python