《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于YOLOv8深度学习的行人跌倒检测系统】 |
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】 | 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 |
11.【基于YOLOv8深度学习的安全帽目标检测系统】 |
二、机器学习实战专栏【链接】 ,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
《------正文------》
基本功能演示
摘要:火灾是一种常见的灾害,对人们的生命财产安全造成极大的威胁。及时发现火源并采取措施扑灭火源是预防火灾的关键。
火焰烟雾检测技术
可以帮助我们快速、准确地发现火源,为火灾的及时扑救提供有力支持。本文基于YOLOv8深度学习框架
,通过979张图片
,训练了一个进行火焰烟雾
的目标检测模型,准确率高达89%
。并基于此模型开发了一款带UI界面的火焰烟雾检测系统
,可用于实时检测场景中的火焰及烟雾,更方便进行功能的展示。该系统是基于python
与PyQT5
开发的,支持图片
、视频
以及摄像头
进行目标检测
,并保存检测结果
。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。
文章目录
- 基本功能演示
- 前言
- 一、软件核心功能介绍及效果演示
- 二、模型的训练、评估与推理
-
- 1.YOLOv8的基本原理
- [2. 数据集准备与训练](#2. 数据集准备与训练)
- [3. 训练结果评估](#3. 训练结果评估)
- [4. 检测结果识别](#4. 检测结果识别)
- 【获取方式】
- 结束语
前言
火焰烟雾检测
在日常生活和工作中具有重要的意义。火灾是一种常见的灾害,对人们的生命财产安全造成极大的威胁。及时发现火源并采取措施扑灭火源是预防火灾的关键。火焰烟雾检测技术
可以帮助我们快速、准确地发现火源,为火灾的及时扑救提供有力支持。
火焰烟雾检测的应用场景非常广泛,主要包括以下几个方面:
家庭场景
:在家庭生活中,通过使用火焰烟雾检测系统,可以实时监控家中的火源情况,一旦发现异常,立即发出警报,提醒家庭成员采取措施,避免火灾事故的发生。
商业场所
:在商场、酒店、餐厅等公共场所,火焰烟雾检测系统可以作为消防设施的一部分,帮助管理人员及时发现火源,保障人员和财产安全。
工业环境
:在工厂、仓库等工业环境中,火焰烟雾检测系统可以有效防止火灾事故的发生,确保生产过程的安全顺利进行。
交通运输
:在公共交通工具如火车、汽车、飞机等上,火焰烟雾检测系统可以实时监测车内火源情况,为乘客提供安全的出行环境。
森林防火
:在森林、草原等易燃区域,火焰烟雾检测系统可以帮助护林员及时发现火源,迅速组织扑救工作,减少火灾对生态环境的破坏。因此,火焰烟雾检测技术在保障人们生命财产安全方面发挥着重要作用,通过使用相关系统,我们可以更加高效地管理和维护各类场所的安全秩序。
博主通过搜集火焰及烟雾
的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5
开发了一款界面简洁的火焰烟雾检测系统
,可支持图片、视频以及摄像头检测
,同时可以将图片或者视频检测结果进行保存
。
软件基本界面如下图所示:
一、软件核心功能介绍及效果演示
软件主要功能
1. 可进行火焰
、烟雾
及正常
这3种状态的目标检测;
2. 支持图片、视频及摄像头
进行检测,同时支持图片的批量检测
;
3. 界面可实时显示目标位置
、目标总数
、置信度
、用时
等信息;
4. 支持图片
或者视频
的检测结果保存
;
(1)图片检测演示
点击图片
图标,选择需要检测的图片,或者点击文件夹图标
,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
批量图片检测操作如下:
(2)视频检测演示
点击视频
图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
(3)摄像头检测演示
点击摄像头
图标,可以打开摄像头,可以实时进行检测,再次点击摄像头
图标,可关闭摄像头。
(4)保存图片与视频检测结果
点击保存
按钮后,会将当前选择的图片【含批量图片】或者视频
的检测结果进行保存。检测的图片与视频结果会存储在save_data
目录下。
二、模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
。
其主要网络结构如下:
2. 数据集准备与训练
通过网络上搜集关于火焰及烟雾的各类图片
,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含979张图片
,其中训练集包含877张图片
,验证集包含47张图片
,测试集包含55张图片
部分图像及标注如下图所示。
图片数据的存放格式如下,在项目目录中新建datasets
目录,同时将跌倒检测的图片分为训练集与验证集放入helmetData
目录下。
同时我们需要新建一个data.yaml
文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml
的具体内容如下:
python
train: E:\MyCVProgram\FireSmokeDetection\datasets\FireSmokeData\train # train images (relative to 'path') 128 images
val: E:\MyCVProgram\FireSmokeDetection\datasets\FireSmokeData\val # val images (relative to 'path') 128 images
test: E:\MyCVProgram\FireSmokeDetection\datasets\FireSmokeData\test # val images (optional)
# number of classes
nc: 3
# Classes
names: ['Fire', 'default', 'smoke']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
python
# 加载模型
model = YOLO("yolov8n.pt") # 加载预训练模型
# Use the model
if __name__ == '__main__':
# Use the model
results = model.train(data='datasets/FireSmokeData/data.yaml', epochs=250, batch=4) # 训练模型
# 将模型转为onnx格式
# success = model.export(format='onnx')
3. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:
定位损失box_loss
:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss
:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss)
:DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
我们通常用PR曲线
来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP
表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5
已经达到了0.87
以上,平均值为0.89
,结果还是很不错的。
4. 检测结果识别
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/trian/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
python
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/fire2_mp4-28_jpg.rf.27cad783f34b8f9f162d91a0c5776350.jpg"
# 加载预训练模型
# conf 0.25 object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
以上便是关于此款火焰烟雾检测系统
的原理与代码介绍。基于此模型,博主用python
与Pyqt5
开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存
。
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
【获取方式】
本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频 等(见下图),获取方式见文末:
注意:该代码基于Python3.9开发,运行界面的主程序为
MainProgram.py
,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt
配置软件运行所需环境。
结束语
以上便是博主开发的基于YOLOv8深度学习的火焰烟雾检测系统
的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!
觉得不错的小伙伴,感谢点赞、关注加收藏哦!