logistic回归详解

为什么不直接统计标签数和预测结果数,计算精度?

因为

  • 存在梯度为0的情况
  • 梯度不连续

为什么叫logistic回归

logistic是因为加了一个sigmoid函数,将输出预测值映射到【0,1】

有时候使用MSE损失函数,拟合

有时候使用cross entropy==》 分类问题

softmax解决多分类问题,让大的概率值更大

交叉熵损失详解 cross entropy

kl散度,两个分布重合的话,kl散度等于0,因为他们很整齐

熵:不确定性,惊喜的衡量度,稳定度

二分类的公式推导

cross entropy 越小越好,优化起来速度更快,在pytorch中,把softmax和log打包到一起了

pytorch中的inplace会改变输入x的值

feature缩放

有两种方式

  1. 图像数据增强
python 复制代码
# 对3通道进行归一化处理   imagenet数据集上的
transforms.Normalize(mean=[0.485,0.456,0.406],
                     std=[0.229,0.224,0.225])
python 复制代码
 #  批归一化 最后生成通道数      28*28
x = torch.rand(100,16,784)
layer = nn.BatchNorm1d(16)
out = layer(x)

#[16]   均值
print(layer.running_mean,layer.running_mean.size())

# 方差
print(layer.running_var)
  1. 批归一化
相关推荐
南 阳几秒前
从微服务到AI服务:Nacos 3.0如何重构下一代动态治理体系?
人工智能·微服务·云原生·重构
fmingzh12 分钟前
NVIDIA高级辅助驾驶安全与技术读后感
人工智能·安全·自动驾驶
qsmyhsgcs1 小时前
Java程序员转人工智能入门学习路线图(2025版)
java·人工智能·学习·机器学习·算法工程师·人工智能入门·ai算法工程师
A林玖1 小时前
【机器学习】朴素贝叶斯
人工智能·算法·机器学习
六边形战士DONK1 小时前
神经网络基础[损失函数,bp算法,梯度下降算法 ]
人工智能·神经网络·算法
IT从业者张某某1 小时前
机器学习-08-时序数据分析预测
人工智能·机器学习·数据分析
袁煦丞1 小时前
AI视频生成神器Wan 2.1:cpolar内网穿透实验室第596个成功挑战
人工智能·程序员·远程工作
xMathematics1 小时前
深度学习与SLAM特征提取融合:技术突破与应用前景
人工智能·深度学习
墨顿2 小时前
Transformer数学推导——Q29 推导语音识别中流式注意力(Streaming Attention)的延迟约束优化
人工智能·深度学习·transformer·注意力机制·跨模态与多模态
xinxiyinhe2 小时前
2025年深度学习模型发展全景透视(基于前沿技术突破与开源生态演进的交叉分析)
人工智能·深度学习·开源