logistic回归详解

为什么不直接统计标签数和预测结果数,计算精度?

因为

  • 存在梯度为0的情况
  • 梯度不连续

为什么叫logistic回归

logistic是因为加了一个sigmoid函数,将输出预测值映射到【0,1】

有时候使用MSE损失函数,拟合

有时候使用cross entropy==》 分类问题

softmax解决多分类问题,让大的概率值更大

交叉熵损失详解 cross entropy

kl散度,两个分布重合的话,kl散度等于0,因为他们很整齐

熵:不确定性,惊喜的衡量度,稳定度

二分类的公式推导

cross entropy 越小越好,优化起来速度更快,在pytorch中,把softmax和log打包到一起了

pytorch中的inplace会改变输入x的值

feature缩放

有两种方式

  1. 图像数据增强
python 复制代码
# 对3通道进行归一化处理   imagenet数据集上的
transforms.Normalize(mean=[0.485,0.456,0.406],
                     std=[0.229,0.224,0.225])
python 复制代码
 #  批归一化 最后生成通道数      28*28
x = torch.rand(100,16,784)
layer = nn.BatchNorm1d(16)
out = layer(x)

#[16]   均值
print(layer.running_mean,layer.running_mean.size())

# 方差
print(layer.running_var)
  1. 批归一化
相关推荐
Dev7z1 天前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人1 天前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风1 天前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
itwangyang5201 天前
AIDD-人工智能药物设计-AI 制药编码之战:预测癌症反应,选对方法是关键
人工智能
蓝桉~MLGT1 天前
Ai-Agent学习历程—— 阶段1——环境的选择、Pydantic基座、Jupyter Notebook的使用
人工智能·学习·jupyter
油泼辣子多加1 天前
【信创】算法开发适配
人工智能·深度学习·算法·机器学习
数据皮皮侠1 天前
2m气温数据集(1940-2024)
大数据·数据库·人工智能·制造·微信开放平台
lzhdim1 天前
魅族手机介绍
人工智能·智能手机
Debroon1 天前
现代医疗中的AI智能体
人工智能
Winner13001 天前
查看rk3566摄像头设备、能力、支持格式
linux·网络·人工智能