pytorch学习6-非线性变换(ReLU和sigmoid)

系列文章目录

  1. pytorch学习1-数据加载以及Tensorboard可视化工具
  2. pytorch学习2-Transforms主要方法使用
  3. pytorch学习3-torchvisin和Dataloader的使用
  4. pytorch学习4-简易卷积实现
  5. pytorch学习5-最大池化层的使用
  6. pytorch学习6-非线性变换(ReLU和sigmoid)
  7. pytorch学习7-序列模型搭建
  8. pytorch学习8-损失函数与反向传播
  9. pytorch学习9-优化器学习
  10. pytorch学习10-网络模型的保存和加载
  11. pytorch学习11-完整的模型训练过程

文章目录


一、非线性变换(ReLU和sigmoid)

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input=torch.tensor([
    [1,-0.5],
    [-1,3]
])
output=torch.reshape(input,(-1,1,2,2))
print(output.shape)

dataset=torchvision.datasets.CIFAR10("./data6",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)
class Mynn(nn.Module):
    def __init__(self):
        super(Mynn,self).__init__()
        self.relu1=ReLU()#使用ReLU激活函数,inplace参数代表是不是覆盖原始数据,默认为False
        self.sigmoid=Sigmoid()##使用sigmoid激活函数
    # def forward(self,input):
    #     output=self.relu1(input)
    #     return output
    def forward(self,input):
        output=self.sigmoid(input)
        return output
mynn=Mynn()
writer=SummaryWriter("logs6")
step=0
for data in dataloader:#dataloader的每一批次,既包含图像又包含标签,所以要他们分出来单独处理
    imgs,taiget=data
    writer.add_images("我是输入",imgs,step)
    output=mynn(imgs)
    writer.add_images("我是输出",output,step)
    step+=1
writer.close()

总结

以上就是今天要讲的内容,非线性变换(ReLU和sigmoid)

相关推荐
折翼的恶魔6 分钟前
前端学习之样式设计
前端·css·学习
Brianna Home18 分钟前
从“码农”到“导演”:AI结对编程如何重塑软件工程范式
大数据·人工智能·深度学习·自然语言处理·chatgpt
oe101919 分钟前
实测Triton-Copilot:AI如何助力高性能算子开发
人工智能·pytorch·copilot·vibecoding·flagos
IT_陈寒24 分钟前
JavaScript性能优化:3个被低估的V8引擎技巧让你的代码提速50%
前端·人工智能·后端
小猪写代码29 分钟前
服务器相关:什么是 alios. centos. cuda. cuda tookit. gcc. cudann. pytorch.
服务器·pytorch·centos
hazy1k41 分钟前
K230基础-录放音频
人工智能·stm32·单片机·嵌入式硬件·音视频·k230
众趣科技2 小时前
数字孪生重构智慧园区:众趣科技何以成为 VR 园区领域标杆
人工智能·3d·智慧城市·空间计算
心勤则明3 小时前
Spring AI 会话记忆实战:从内存存储到 MySQL + Redis 双层缓存架构
人工智能·spring·缓存
ARM+FPGA+AI工业主板定制专家5 小时前
基于GPS/PTP/gPTP的自动驾驶数据同步授时方案
人工智能·机器学习·自动驾驶
长鸳词羡5 小时前
wordpiece、unigram、sentencepiece基本原理
人工智能