BiLSTM-CRF的中文命名实体识别

项目地址: NLP-Application-and-Practice/11_BiLSTM-ner-bilstm-crf/11.3-BiLSTM-CRF的中文命名实体识别/ner_bilstm_crf at master · zz-zik/NLP-Application-and-Practice (github.com)

读取renmindata.pkl文件

read_file_pkl.py

python 复制代码
# encoding:utf-8

import pickle


# 读取数据
def load_data():
    pickle_path = './data_target_pkl/renmindata.pkl'
    with open(pickle_path, 'rb') as inp:
        word2id = pickle.load(inp)
        id2word = pickle.load(inp)
        tag2id = pickle.load(inp)
        id2tag = pickle.load(inp)
        x_train = pickle.load(inp)
        y_train = pickle.load(inp)
        x_test = pickle.load(inp)
        y_test = pickle.load(inp)
        x_valid = pickle.load(inp)
        y_valid = pickle.load(inp)
    print("train len:", len(x_train))
    print("test len:", len(x_test))
    print("valid len:", len(x_valid))

    return word2id, tag2id, x_train, x_test, x_valid, y_train, y_test, y_valid, id2tag


def main():
    word = load_data()
    print(len(word))


if __name__ == '__main__':
    main()

这段代码定义了一个函数load_data(),用于读取存储在文件'../data_target_pkl/renminddata.pkl'中的数据。函数首先使用pickle模块打开文件,然后逐个加载文件中的数据并赋值给相应的变量。最后,打印出训练集、测试集和验证集的长度,并返回这些变量。在main()函数中,调用load_data()函数并打印其返回值。这段代码的目的是读取并加载pickle文件中的数据,并在main()函数中测试load_data()函数的正确性。

构建BiLSTM-CRF

bilstm_crf_model.py

python 复制代码
# encoding:utf-8

import torch
import torch.nn as nn
from TorchCRF import CRF
from torch.utils.data import Dataset


# 命名体识别数据
class NERDataset(Dataset):
    def __init__(self, X, Y, *args, **kwargs):
        self.data = [{'x': X[i], 'y': Y[i]} for i in range(X.shape[0])]

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return len(self.data)


# LSTM_CRF模型
class NERLSTM_CRF(nn.Module):
    def __init__(self, config):
        super(NERLSTM_CRF, self).__init__()

        self.embedding_dim = config.embedding_dim
        self.hidden_dim = config.hidden_dim
        self.vocab_size = config.vocab_size
        self.num_tags = config.num_tags

        self.embeds = nn.Embedding(self.vocab_size, self.embedding_dim)
        self.dropout = nn.Dropout(config.dropout)

        self.lstm = nn.LSTM(
            self.embedding_dim,
            self.hidden_dim // 2,
            num_layers=1,
            bidirectional=True,
            batch_first=True,  # 该属性设置后,需要特别注意数据的形状
        )

        self.linear = nn.Linear(self.hidden_dim, self.num_tags)

        # CRF 层
        self.crf = CRF(self.num_tags)

    def forward(self, x, mask):
        embeddings = self.embeds(x)
        feats, hidden = self.lstm(embeddings)
        emissions = self.linear(self.dropout(feats))
        outputs = self.crf.viterbi_decode(emissions, mask)
        return outputs

    def log_likelihood(self, x, labels, mask):
        embeddings = self.embeds(x)
        feats, hidden = self.lstm(embeddings)
        emissions = self.linear(self.dropout(feats))
        loss = -self.crf.forward(emissions, labels, mask)
        return torch.sum(loss)


# ner chinese

这段代码定义了一个用于命名体识别的LSTM_CRF模型。NERDataset类是一个自定义的用于存储命名体识别数据的类,继承自torch.utils.data.Dataset。NERLSTM_CRF类是一个自定义的继承自torch.nn.Module的类,用于实现LSTM_CRF模型的前向传播和训练过程。该模型包含嵌入层、LSTM层、线性层和CRF层。通过调用log_likelihood方法可以计算给定输入序列的对数似然。

模型信息

utils.py

python 复制代码
# encoding:utf-8
import torch
from utils import load_data
from utils import parse_tags
from utils import utils_to_train
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report

word2id = load_data()[0]
max_epoch, device, train_data_loader, valid_data_loader, test_data_loader, optimizer, model = utils_to_train()


# 中文命名体识别
class ChineseNER(object):
    def train(self):
        for epoch in range(max_epoch):

            # 训练模式
            model.train()

            for index, batch in enumerate(train_data_loader):
                # 梯度归零
                optimizer.zero_grad()

                # 训练数据-->gpu
                x = batch['x'].to(device)
                mask = (x > 0).to(device)
                y = batch['y'].to(device)

                # 前向计算计算损失
                loss = model.log_likelihood(x, y, mask)

                # 反向传播
                loss.backward()

                # 梯度裁剪
                torch.nn.utils.clip_grad_norm_(parameters=model.parameters(),
                                               max_norm=10)

                # 更新参数
                optimizer.step()
                if index % 200 == 0:
                    print('epoch:%5d,------------loss:%f' %
                          (epoch, loss.item()))

            # 验证损失和精度
            aver_loss = 0
            preds, labels = [], []
            for index, batch in enumerate(valid_data_loader):

                # 验证模式
                model.eval()

                # 验证数据-->gpu
                val_x, val_y = batch['x'].to(device), batch['y'].to(device)
                val_mask = (val_x > 0).to(device)
                predict = model(val_x, val_mask)

                # 前向计算损失
                loss = model.log_likelihood(val_x, val_y, val_mask)
                aver_loss += loss.item()

                # 统计非0的,也就是真实标签的长度
                leng = []
                res = val_y.cpu()
                for i in val_y.cpu():
                    tmp = []
                    for j in i:
                        if j.item() > 0:
                            tmp.append(j.item())
                    leng.append(tmp)

                for index, i in enumerate(predict):
                    preds += i[:len(leng[index])]

                for index, i in enumerate(val_y.tolist()):
                    labels += i[:len(leng[index])]

            # 损失值与评测指标
            aver_loss /= (len(valid_data_loader) * 64)
            precision = precision_score(labels, preds, average='macro')
            recall = recall_score(labels, preds, average='macro')
            f1 = f1_score(labels, preds, average='macro')
            report = classification_report(labels, preds)
            print(report)
            torch.save(model.state_dict(), 'params1.data_target_pkl')

    # 预测,输入为单句,输出为对应的单词和标签
    def predict(self, input_str=""):
        model.load_state_dict(torch.load("../models/ner/params1.data_target_pkl"))
        model.eval()
        if not input_str:
            input_str = input("请输入文本: ")

        input_vec = []
        for char in input_str:
            if char not in word2id:
                input_vec.append(word2id['[unknown]'])
            else:
                input_vec.append(word2id[char])

        # convert to tensor
        sentences = torch.tensor(input_vec).view(1, -1).to(device)
        mask = sentences > 0
        paths = model(sentences, mask)

        res = parse_tags(input_str, paths[0])
        return res

    # 在测试集上评判性能
    def test(self, test_dataloader):
        model.load_state_dict(torch.load("../models/ner/params1.data_target_pkl"))

        aver_loss = 0
        preds, labels = [], []
        for index, batch in enumerate(test_dataloader):

            # 验证模式
            model.eval()

            # 验证数据-->gpu
            val_x, val_y = batch['x'].to(device), batch['y'].to(device)
            val_mask = (val_x > 0).to(device)
            predict = model(val_x, val_mask)

            # 前向计算损失
            loss = model.log_likelihood(val_x, val_y, val_mask)
            aver_loss += loss.item()

            # 统计非0的,也就是真实标签的长度
            leng = []
            for i in val_y.cpu():
                tmp = []
                for j in i:
                    if j.item() > 0:
                        tmp.append(j.item())
                leng.append(tmp)

            for index, i in enumerate(predict):
                preds += i[:len(leng[index])]

            for index, i in enumerate(val_y.tolist()):
                labels += i[:len(leng[index])]

        # 损失值与评测指标
        aver_loss /= len(test_dataloader)
        precision = precision_score(labels, preds, average='macro')
        recall = recall_score(labels, preds, average='macro')
        f1 = f1_score(labels, preds, average='macro')
        report = classification_report(labels, preds)
        print(report)


if __name__ == '__main__':
    cn = ChineseNER()
    cn.train()

这段代码定义了一个用于命名实体识别的模型和训练函数。其中,parse_tags函数用于将模型的预测结果解码成可读的实体类别;Config类定义了一些超参数;utils_to_train函数返回训练过程中需要用到的各种对象和参数。

BiLSTM-CRF的训练

train.py

python 复制代码
# encoding:utf-8
import torch
from utils import load_data
from utils import parse_tags
from utils import utils_to_train
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report

word2id = load_data()[0]
max_epoch, device, train_data_loader, valid_data_loader, test_data_loader, optimizer, model = utils_to_train()


# 中文命名体识别
class ChineseNER(object):
    def train(self):
        for epoch in range(max_epoch):

            # 训练模式
            model.train()

            for index, batch in enumerate(train_data_loader):
                # 梯度归零
                optimizer.zero_grad()

                # 训练数据-->gpu
                x = batch['x'].to(device)
                mask = (x > 0).to(device)
                y = batch['y'].to(device)

                # 前向计算计算损失
                loss = model.log_likelihood(x, y, mask)

                # 反向传播
                loss.backward()

                # 梯度裁剪
                torch.nn.utils.clip_grad_norm_(parameters=model.parameters(),
                                               max_norm=10)

                # 更新参数
                optimizer.step()
                if index % 200 == 0:
                    print('epoch:%5d,------------loss:%f' %
                          (epoch, loss.item()))

            # 验证损失和精度
            aver_loss = 0
            preds, labels = [], []
            for index, batch in enumerate(valid_data_loader):

                # 验证模式
                model.eval()

                # 验证数据-->gpu
                val_x, val_y = batch['x'].to(device), batch['y'].to(device)
                val_mask = (val_x > 0).to(device)
                predict = model(val_x, val_mask)

                # 前向计算损失
                loss = model.log_likelihood(val_x, val_y, val_mask)
                aver_loss += loss.item()

                # 统计非0的,也就是真实标签的长度
                leng = []
                res = val_y.cpu()
                for i in val_y.cpu():
                    tmp = []
                    for j in i:
                        if j.item() > 0:
                            tmp.append(j.item())
                    leng.append(tmp)

                for index, i in enumerate(predict):
                    preds += i[:len(leng[index])]

                for index, i in enumerate(val_y.tolist()):
                    labels += i[:len(leng[index])]

            # 损失值与评测指标
            aver_loss /= (len(valid_data_loader) * 64)
            precision = precision_score(labels, preds, average='macro')
            recall = recall_score(labels, preds, average='macro')
            f1 = f1_score(labels, preds, average='macro')
            report = classification_report(labels, preds)
            print(report)
            torch.save(model.state_dict(), 'params1.data_target_pkl')

    # 预测,输入为单句,输出为对应的单词和标签
    def predict(self, input_str=""):
        model.load_state_dict(torch.load("../models/ner/params1.data_target_pkl"))
        model.eval()
        if not input_str:
            input_str = input("请输入文本: ")

        input_vec = []
        for char in input_str:
            if char not in word2id:
                input_vec.append(word2id['[unknown]'])
            else:
                input_vec.append(word2id[char])

        # convert to tensor
        sentences = torch.tensor(input_vec).view(1, -1).to(device)
        mask = sentences > 0
        paths = model(sentences, mask)

        res = parse_tags(input_str, paths[0])
        return res

    # 在测试集上评判性能
    def test(self, test_dataloader):
        model.load_state_dict(torch.load("../models/ner/params1.data_target_pkl"))

        aver_loss = 0
        preds, labels = [], []
        for index, batch in enumerate(test_dataloader):

            # 验证模式
            model.eval()

            # 验证数据-->gpu
            val_x, val_y = batch['x'].to(device), batch['y'].to(device)
            val_mask = (val_x > 0).to(device)
            predict = model(val_x, val_mask)

            # 前向计算损失
            loss = model.log_likelihood(val_x, val_y, val_mask)
            aver_loss += loss.item()

            # 统计非0的,也就是真实标签的长度
            leng = []
            for i in val_y.cpu():
                tmp = []
                for j in i:
                    if j.item() > 0:
                        tmp.append(j.item())
                leng.append(tmp)

            for index, i in enumerate(predict):
                preds += i[:len(leng[index])]

            for index, i in enumerate(val_y.tolist()):
                labels += i[:len(leng[index])]

        # 损失值与评测指标
        aver_loss /= len(test_dataloader)
        precision = precision_score(labels, preds, average='macro')
        recall = recall_score(labels, preds, average='macro')
        f1 = f1_score(labels, preds, average='macro')
        report = classification_report(labels, preds)
        print(report)


if __name__ == '__main__':
    cn = ChineseNER()
    cn.train()

这段代码实现了一个中文命名体识别的训练和预测功能。通过加载数据和训练参数,使用循环神经网络模型进行训练和验证,计算损失和评估指标,然后在测试集上进行性能评估。最后,提供一个函数用于对输入文本进行预测,并返回预测结果。

相关推荐
阡之尘埃1 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力3 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20213 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧35 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽5 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_5 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
SongYuLong的博客5 小时前
Air780E基于LuatOS编程开发
人工智能
Jina AI5 小时前
RAG 系统的分块难题:小型语言模型如何找到最佳断点?
人工智能·语言模型·自然语言处理
-派神-5 小时前
大语言模型(LLM)量化基础知识(一)
人工智能·语言模型·自然语言处理
johnny_hhh5 小时前
AI大模型重塑软件开发流程:定义、应用场景、优势、挑战及未来展望
人工智能