pytorch学习4-简易卷积实现

系列文章目录

  1. pytorch学习1-数据加载以及Tensorboard可视化工具
  2. pytorch学习2-Transforms主要方法使用
  3. pytorch学习3-torchvisin和Dataloader的使用
  4. pytorch学习4-简易卷积实现
  5. pytorch学习5-最大池化层的使用
  6. pytorch学习6-非线性变换(ReLU和sigmoid)
  7. pytorch学习7-序列模型搭建
  8. pytorch学习8-损失函数与反向传播
  9. pytorch学习9-优化器学习
  10. pytorch学习10-网络模型的保存和加载
  11. pytorch学习11-完整的模型训练过程

文章目录


一、简易nn

python 复制代码
class MyNN(nn.Module):#创建一个神经网络,需要继承nn.Moudle
    def __init__(self, ):
        super().__init__()
    def forward(self,input):
        output=input+1#这个nn的作用就是把输入自增一
        return output
mynn=MyNN()
x=torch.tensor(1.0)
output=mynn(x)
print(output)

二、简简易卷积

python 复制代码
input=torch.tensor([#原始图像
    [1,2,0,3,1],
    [0,1,2,3,1],
    [1,2,1,0,0],
    [5,2,3,1,1],
    [2,1,0,1,1],
])
kernel=torch.tensor([#卷积核
    [1,2,1],
    [0,1,0],
    [2,1,0],
])
input=torch.reshape(input,(1,1,5,5))#torch卷积操作要求数据有四个参数,批次、通道数、高、宽,而原始的input这里只有高和宽两个参数,所以需要reshape这个转换函数来将数据转换为想要的
kernel=torch.reshape(kernel,(1,1,3,3))
print(input.shape)
print(kernel.shape)

#conv2d代表二维卷积,还有一维三维等等
output=F.conv2d(input,kernel,stride=1,padding=1)#进行卷积操作,padding=1代表进行一行列0填充,默认为0,不填充
print(output)

三、简易卷积

python 复制代码
dataset=torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)#这行代码将整个数据集分割成许多批,每一批有64个样本
class Mynn2(nn.Module):
    def __init__(self, ) :
        super(Mynn2,self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#out_channels代表输出的通道数(也就是代表经过卷积之后输出多少个图像(每一张图像都由一个卷积核生成,所以这个输出通道数也间接代表了有几个卷积核))
    def forward(self,x):
        x=self.conv1(x)#进行卷积操作
        return  x
mynn2=Mynn2()
#print(mynn2)#查看网络结构
writer=SummaryWriter("logs")
step=0
for data in dataloader:
    imgs,target=data
    output=mynn2(imgs)
    print(imgs.shape)
    print(output.shape)#这两行可以看出,输入的3通道输出变成了6通道
    writer.add_images("我是输入",imgs,step)

    output=torch.reshape(output,(-1,3,30,30))#这个是因为,输出通道有六个,无法显示,那么可以将输出修改为3个通道,和输入一样,这个函数有四个参数,第一个参数设置为-1就会自动计算合适值

    writer.add_images("我是输出",output,step)
    step=step+1
writer.close()

总结

以上就是今天要讲的内容,从易到难进行简易卷积实现

相关推荐
Sagittarius_A*1 小时前
边缘检测:基础算子到高级边缘提取【计算机视觉】
人工智能·python·opencv·计算机视觉
杜子不疼.1 小时前
【Linux】基础IO(三):文件描述符与重定向
linux·c语言·开发语言·人工智能
盼小辉丶1 小时前
PyTorch实战(25)——使用PyTorch构建DQN模型
人工智能·pytorch·深度学习·强化学习
Gain_chance2 小时前
19-学习笔记尚硅谷数仓搭建-数据仓库运行环境搭建(spark安装及配置)
数据仓库·笔记·学习·spark
Gain_chance2 小时前
21-学习笔记尚硅谷数仓搭建-数据仓库模拟数据生成
数据仓库·笔记·学习
时见先生8 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
zilikew9 小时前
Flutter框架跨平台鸿蒙开发——桌面宠物APP的开发流程
学习·flutter·harmonyos·鸿蒙·宠物
昨夜见军贴061610 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力10 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场10 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班