ElasticSearch 了解文本相似度 TF-IDF吗?

是的,ElasticSearch了解文本相似度中的TF-IDF(Term Frequency-Inverse Document Frequency)算法。TF-IDF是一种用于衡量文档中词语重要性的度量方法,常用于文本搜索和文本相似度比较。

在ElasticSearch中,TF-IDF可以通过其自带的分析器(Analyzer)和聚合功能来实现。通过使用适当的分析器对文档进行分词,可以计算每个单词在文档中的频率和在整个文档集合中的稀有程度,从而得到TF-IDF值。这些值可以用于相似度比较和搜索排名。

除了TF-IDF之外,ElasticSearch还提供了其他文本相似度算法,如余弦相似度、编辑距离和词向量模型等。用户可以根据需求选择适当的算法来进行文本相似度比较和搜索。

简单地说,就是你检索一个词,匹配出来的文章,网页太多了。比如 1000 个,这些内容再该怎么呈现,哪些在前面哪些在后面。这需要也有个对匹配度的评分。

TF-IDF 就是干这个的。

TF = Term Frequency 词频,一个词在这个文档中出现的频率。值越大,说明这文档越匹配,正向指标。

IDF = Inverse Document Frequency 反向文档频率,简单点说就是一个词在所有文档中都出现,那么这个词不重要。比如"的、了、我、好"这些词所有文档都出现,对检索毫无帮助。反向指标。

TF-IDF = TF / IDF

复杂的公式,就不写了,主要理解他的思想即可。

相关推荐
zmd-zk6 分钟前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶7 分钟前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
测试界的酸菜鱼24 分钟前
Python 大数据展示屏实例
大数据·开发语言·python
时差95326 分钟前
【面试题】Hive 查询:如何查找用户连续三天登录的记录
大数据·数据库·hive·sql·面试·database
Mephisto.java28 分钟前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
Mephisto.java34 分钟前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database
道可云35 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
成都古河云1 小时前
智慧场馆:安全、节能与智能化管理的未来
大数据·运维·人工智能·安全·智慧城市
软工菜鸡1 小时前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
武子康2 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘