ElasticSearch 了解文本相似度 TF-IDF吗?

是的,ElasticSearch了解文本相似度中的TF-IDF(Term Frequency-Inverse Document Frequency)算法。TF-IDF是一种用于衡量文档中词语重要性的度量方法,常用于文本搜索和文本相似度比较。

在ElasticSearch中,TF-IDF可以通过其自带的分析器(Analyzer)和聚合功能来实现。通过使用适当的分析器对文档进行分词,可以计算每个单词在文档中的频率和在整个文档集合中的稀有程度,从而得到TF-IDF值。这些值可以用于相似度比较和搜索排名。

除了TF-IDF之外,ElasticSearch还提供了其他文本相似度算法,如余弦相似度、编辑距离和词向量模型等。用户可以根据需求选择适当的算法来进行文本相似度比较和搜索。

简单地说,就是你检索一个词,匹配出来的文章,网页太多了。比如 1000 个,这些内容再该怎么呈现,哪些在前面哪些在后面。这需要也有个对匹配度的评分。

TF-IDF 就是干这个的。

TF = Term Frequency 词频,一个词在这个文档中出现的频率。值越大,说明这文档越匹配,正向指标。

IDF = Inverse Document Frequency 反向文档频率,简单点说就是一个词在所有文档中都出现,那么这个词不重要。比如"的、了、我、好"这些词所有文档都出现,对检索毫无帮助。反向指标。

TF-IDF = TF / IDF

复杂的公式,就不写了,主要理解他的思想即可。

相关推荐
数据智研44 分钟前
【数据分享】上市公司创新韧性数据(2007-2023)
大数据·人工智能
辞--忧7 小时前
双十一美妆数据分析:洞察消费趋势与行业秘密
大数据
时序数据说14 小时前
国内时序数据库概览
大数据·数据库·物联网·时序数据库·iotdb
qqxhb14 小时前
零基础数据结构与算法——第七章:算法实践与工程应用-搜索引擎
算法·搜索引擎·tf-idf·倒排索引·pagerank·算法库
阿Paul果奶ooo16 小时前
Flink中基于时间的合流--双流联结(join)
大数据·flink
数据爬坡ing16 小时前
过程设计工具深度解析-软件工程之详细设计(补充篇)
大数据·数据结构·算法·apache·软件工程·软件构建·设计语言
计算机源码社18 小时前
分享一个基于Hadoop的二手房销售签约数据分析与可视化系统,基于Python可视化的二手房销售数据分析平台
大数据·hadoop·python·数据分析·毕业设计项目·毕业设计源码·计算机毕设选题
Direction_Wind19 小时前
Flinksql bug: Heartbeat of TaskManager with id container_XXX timed out.
大数据·flink·bug
计算机毕设残哥19 小时前
完整技术栈分享:基于Hadoop+Spark的在线教育投融资大数据可视化分析系统
大数据·hadoop·python·信息可视化·spark·计算机毕设·计算机毕业设计
轻流AI21 小时前
线索转化率翻3倍?AI重构CRM
大数据·人工智能·低代码·重构