是的,ElasticSearch了解文本相似度中的TF-IDF(Term Frequency-Inverse Document Frequency)算法。TF-IDF是一种用于衡量文档中词语重要性的度量方法,常用于文本搜索和文本相似度比较。
在ElasticSearch中,TF-IDF可以通过其自带的分析器(Analyzer)和聚合功能来实现。通过使用适当的分析器对文档进行分词,可以计算每个单词在文档中的频率和在整个文档集合中的稀有程度,从而得到TF-IDF值。这些值可以用于相似度比较和搜索排名。
除了TF-IDF之外,ElasticSearch还提供了其他文本相似度算法,如余弦相似度、编辑距离和词向量模型等。用户可以根据需求选择适当的算法来进行文本相似度比较和搜索。
简单地说,就是你检索一个词,匹配出来的文章,网页太多了。比如 1000 个,这些内容再该怎么呈现,哪些在前面哪些在后面。这需要也有个对匹配度的评分。
TF-IDF 就是干这个的。
TF = Term Frequency 词频,一个词在这个文档中出现的频率。值越大,说明这文档越匹配,正向指标。
IDF = Inverse Document Frequency 反向文档频率,简单点说就是一个词在所有文档中都出现,那么这个词不重要。比如"的、了、我、好"这些词所有文档都出现,对检索毫无帮助。反向指标。
TF-IDF = TF / IDF
复杂的公式,就不写了,主要理解他的思想即可。