GAN:WGAN前作

WGAN前作:有原则的方法来训练GANs

论文:https://arxiv.org/abs/1701.04862

发表:ICLR 2017

本文是wgan三部曲的第一部。文中并没有引入新的算法,而是标是朝着完全理解生成对抗网络的训练动态过程迈进理论性的一步。

文中基本是理论公式的推导,看起来确实头大,偷懒就直接阅读网上整理好的资料了,参考

1:译文

2:生成模型(一):GAN - 知乎

3:令人拍案叫绝的Wasserstein GAN - 知乎

梯度消失

文章花了大量的篇幅进行数学推导,证明在一般的情况,如果Discriminator训练得太好,Generator就无法得到足够的梯度继续优化,而如果Discriminator训练得太弱,指示作用不显著,同样不能让Generator进行有效的学习。这样一来,Discriminator的训练火候就非常难把控,这就是GAN训练难的根源。

**实验验证:**基于DCGAN,分别训练1、10、25epoch,固定Generator,然后从头开始训练Discriminator,绘制出Generator目标函数梯度和训练迭代次数的关系如下。可以看到,经过25 epochs的训练以后,Generator得到的梯度已经非常小了,出现了明显的梯度消失问题。

梯度不稳定

**实验验证:**基于DCGAN,分别训练1、10、25epoch,固定Generator,然后从头开始训练Discriminator,绘制出梯度信息。可以看出更有明显的梯度方差较大的缺陷,导致训练的不稳定。在训练的早期(训练了1 epoch和训练了10 epochs),梯度的方差很大,对应的曲线看起来比较粗,直到训练了25 epochs以后GAN收敛了才出现方差较小的梯度。

本文的解决方案: 添加噪声

为增加两个概率分布创造更高的重叠机会,一种解决方案是在判别器的输入上添加连续噪声.

相关推荐
老蒋每日coding7 分钟前
从存证到智能:当碳链架构注入AI灵魂——区块链+AI融合新范式
人工智能·区块链
DN202022 分钟前
靠谱的AI销售机器人哪家好
java·人工智能·机器人
菜鸟‍30 分钟前
【论文学习】重新审视面向持续图像分割的基于查询的 Transformer || 用于二分类图像分割的多视图聚合网络
人工智能·学习·计算机视觉
乌恩大侠30 分钟前
AI-RAN Sionna 开发者套件
人工智能·usrp·mimo·airan·sionna
foundbug99931 分钟前
正则化反演的MATLAB实现(适用于地球物理数值反演)
人工智能·matlab
JeffDingAI1 小时前
【Datawhale学习笔记】RLHF微调技术及实践
人工智能·笔记·学习
CourserLi1 小时前
【AI 解题】Yusa的密码学课堂 2026.1.25
人工智能·密码学
人工智能AI技术1 小时前
【Agent从入门到实践】33 集成多工具,实现Agent的工具选择与执行
人工智能·python
逐梦苍穹1 小时前
Clawdbot vs ClaudeCode:7x24运行方案全对比
人工智能·claudecode·clawdbot
AI街潜水的八角1 小时前
语义分割实战——基于EGEUNet神经网络印章分割系统3:含训练测试代码、数据集和GUI交互界面
人工智能·深度学习·神经网络