GAN:WGAN前作

WGAN前作:有原则的方法来训练GANs

论文:https://arxiv.org/abs/1701.04862

发表:ICLR 2017

本文是wgan三部曲的第一部。文中并没有引入新的算法,而是标是朝着完全理解生成对抗网络的训练动态过程迈进理论性的一步。

文中基本是理论公式的推导,看起来确实头大,偷懒就直接阅读网上整理好的资料了,参考

1:译文

2:生成模型(一):GAN - 知乎

3:令人拍案叫绝的Wasserstein GAN - 知乎

梯度消失

文章花了大量的篇幅进行数学推导,证明在一般的情况,如果Discriminator训练得太好,Generator就无法得到足够的梯度继续优化,而如果Discriminator训练得太弱,指示作用不显著,同样不能让Generator进行有效的学习。这样一来,Discriminator的训练火候就非常难把控,这就是GAN训练难的根源。

**实验验证:**基于DCGAN,分别训练1、10、25epoch,固定Generator,然后从头开始训练Discriminator,绘制出Generator目标函数梯度和训练迭代次数的关系如下。可以看到,经过25 epochs的训练以后,Generator得到的梯度已经非常小了,出现了明显的梯度消失问题。

梯度不稳定

**实验验证:**基于DCGAN,分别训练1、10、25epoch,固定Generator,然后从头开始训练Discriminator,绘制出梯度信息。可以看出更有明显的梯度方差较大的缺陷,导致训练的不稳定。在训练的早期(训练了1 epoch和训练了10 epochs),梯度的方差很大,对应的曲线看起来比较粗,直到训练了25 epochs以后GAN收敛了才出现方差较小的梯度。

本文的解决方案: 添加噪声

为增加两个概率分布创造更高的重叠机会,一种解决方案是在判别器的输入上添加连续噪声.

相关推荐
诚威_lol_中大努力中21 分钟前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
中关村科金41 分钟前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_44 分钟前
Product Hunt 今日热榜 | 2024-12-25
人工智能
Luke Ewin1 小时前
基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio
人工智能·语音识别·声纹识别·通话录音区分说话人
DashVector1 小时前
如何通过HTTP API检索Doc
数据库·人工智能·http·阿里云·数据库开发·向量检索
说私域1 小时前
无人零售及开源 AI 智能名片 S2B2C 商城小程序的深度剖析
人工智能·小程序·零售
Calvin8808281 小时前
Android Studio 的革命性更新:Project Quartz 和 Gemini,开启 AI 开发新时代!
android·人工智能·android studio
Jamence2 小时前
【深度学习数学知识】-贝叶斯公式
人工智能·深度学习·概率论
feifeikon2 小时前
机器学习DAY4续:梯度提升与 XGBoost (完)
人工智能·深度学习·机器学习
深度学习机器2 小时前
LangGraph:基于图结构的大模型智能体开发框架
人工智能·python·深度学习