Python高级数据结构——B树和B+树

Python中的B树和B+树:高级数据结构解析

B树和B+树是一种多叉树,常用于处理大量数据的存储和检索操作。它们广泛应用于文件系统、数据库索引等领域,具有高效的插入、删除和搜索性能。在本文中,我们将深入讲解Python中的B树和B+树,包括它们的基本概念、插入、删除和搜索操作,并使用代码示例演示它们的使用。

基本概念

1. B树和B+树的定义

B树和B+树是一种自平衡的搜索树,其每个节点可以包含多个键值对。B树和B+树的主要区别在于节点的定义和遍历方式。

B树: 每个节点包含键值对,并具有子节点。B树的节点包含的键值对数量介于t-1和2t-1之间,其中t是树的最小度数。

B+树: 内部节点只包含键值,不存储数据。所有的数据都存储在叶子节点上,形成有序链表。B+树的节点包含的键值对数量介于t和2t-1之间。

python 复制代码
class BNode:
    def __init__(self, is_leaf=True):
        self.keys = []
        self.children = []
        self.is_leaf = is_leaf

class BTree:
    def __init__(self, t):
        self.root = BNode()
        self.t = t  # 最小度数

插入操作

2. B树和B+树的插入

B树和B+树的插入操作包括两个步骤:首先找到要插入的位置,然后将键值对插入到节点中。插入后,可能需要进行节点分裂操作,以保持树的平衡性。

python 复制代码
class BTree:
    # ... (前面的定义)

    def insert(self, key):
        root = self.root

        if len(root.keys) == 2 * self.t - 1:
            new_root = BNode(is_leaf=False)
            new_root.children.append(root)
            self._split_child(new_root, 0)
            self.root = new_root
            self._insert_non_full(new_root, key)
        else:
            self._insert_non_full(root, key)

    def _insert_non_full(self, x, key):
        i = len(x.keys) - 1

        if x.is_leaf:
            x.keys.append(None)
            while i >= 0 and key < x.keys[i]:
                x.keys[i + 1] = x.keys[i]
                i -= 1
            x.keys[i + 1] = key
        else:
            while i >= 0 and key < x.keys[i]:
                i -= 1
            i += 1
            if len(x.children[i].keys) == 2 * self.t - 1:
                self._split_child(x, i)
                if key > x.keys[i]:
                    i += 1
            self._insert_non_full(x.children[i], key)

    def _split_child(self, x, i):
        t = self.t
        y = x.children[i]
        z = BNode(is_leaf=y.is_leaf)

        x.children.insert(i + 1, z)
        x.keys.insert(i, y.keys[t - 1])

        z.keys = y.keys[t:2 * t - 1]
        y.keys = y.keys[0:t - 1]

        if not y.is_leaf:
            z.children = y.children[t:2 * t]
            y.children = y.children[0:t]

删除操作

3. B树和B+树的删除

B树和B+树的删除操作同样包括两个步骤:首先找到要删除的位置,然后从节点中删除键值对。删除后,可能需要进行节点合并操作,以保持树的平衡性。

python 复制代码
class BTree:
    # ... (前面的定义)

    def delete(self, key):
        root = self.root

        if len(root.keys) == 0:
            return

        self._delete(root, key)

        if len(root.keys) == 0 and not root.is_leaf:
            self.root = root.children[0]

    def _delete(self, x, key):
        t = self.t
        i = 0

        while i < len(x.keys) and key > x.keys[i]:
            i += 1

        if i < len(x.keys) and key == x.keys[i]:
            if x.is_leaf:
                del x.keys[i]
            else:
                self._delete_internal(x, i)
        elif not x.is_leaf:
            self._delete_recursive(x, i, key)

    def _delete_recursive(self, x, i, key):
        t = self.t
        child = x.children[i]
        if len(child.keys) == t - 1:
            self._fix_child(x, i)
            i -= 1

        self._delete(child, key)

    def _delete_internal(self, x, i):
        t = self.t
        key = x.keys[i]

        if x.children[i].is_leaf:
            predecessor = self._get_predecessor(x.children[i])
            x.keys[i] = predecessor
            self._delete(x.children[i], predecessor)
        else:
            successor = self._get_successor(x.children[i])
            x.keys[i] = successor
            self._delete(x.children[i], successor)

    def _get_predecessor(self, x):
        while not x.is_leaf:
            x = x.children[-1]
        return x.keys[-1]

    def _get_successor(self, x):
        while not x.is_leaf:
            x = x.children[0]
        return x.keys[0]

    def _fix_child(self, x, i):
        t = self.t
        if i > 0 and len(x.children[i - 1].keys) >= t:
            self._borrow_from_prev(x, i)
        elif i < len(x.children) - 1 and len(x.children[i + 1].keys) >= t:
            self._borrow_from_next(x, i)
        elif i > 0:
            self._merge(x, i - 1)
        else:
            self._merge(x, i)

    def _borrow_from_prev(self, x, i):
        child = x.children[i]
        sibling = x.children[i - 1]

        child.keys.insert(0, x.keys[i - 1])
        x.keys[i - 1] = sibling.keys.pop()

        if not child.is_leaf:
            child.children.insert(0, sibling.children.pop())

    def _borrow_from_next(self, x, i):
        child = x.children[i]
        sibling = x.children[i + 1]

        child.keys.append(x.keys[i])
        x.keys[i] = sibling.keys.pop(0)

        if not child.is_leaf:
            child.children.append(sibling.children.pop(0))

    def _merge(self, x, i):
        t = self.t
        child = x.children[i]
        sibling = x.children[i + 1]

        child.keys.append(x.keys.pop(i))
        child.keys += sibling.keys
        if not child.is_leaf:
            child.children += sibling.children

        del x.children[i + 1]

搜索操作

4. B树和B+树的搜索

B树和B+树的搜索操作与普通的二叉搜索树类似,通过递归实现。

python 复制代码
class BTree:
    # ... (前面的定义)

    def search(self, key):
        return self._search(self.root, key)

    def _search(self, x, key):
        i = 0
        while i < len(x.keys) and key > x.keys[i]:
            i += 1
        if i < len(x.keys) and key == x.keys[i]:
            return True
        elif x.is_leaf:
            return False
        else:
            return self._search(x.children[i], key)

应用场景

B树和B+树广泛应用于文件系统、数据库索引等需要大量数据存储和检索的场景。它们的平衡性和高效性能使得它们成为处理大规模数据的理想选择。

总结

B树和B+树是一种多叉搜索树,具有高效的插入、删除和搜索性能。它们通过节点的合并和分裂操作来保持平衡,适用于大规模数据的存储和检索。在Python中,我们可以使用类似上述示例的代码实现B树和B+树,并根据实际问题定制插入、删除和搜索的操作。理解B树和B+树的基本概念和操作,将有助于更好地应用它们解决实际问题,提高数据存储和检索的效率。

相关推荐
databook2 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar3 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户8356290780513 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_3 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机10 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机11 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机11 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机11 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i11 小时前
drf初步梳理
python·django
每日AI新事件11 小时前
python的异步函数
python