Python实现的一个简单的GAN(生成对抗网络)例子

一个简单的GAN(生成对抗网络)例子

以下是使用Python实现的一个简单的GAN(生成对抗网络)例子,它可以生成手写数字图像

复制代码
```python
# Importing libraries
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropout
from tensorflow.keras.layers import BatchNormalization, Activation, ZeroPadding2D
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.optimizers import Adam

# Loading the dataset
(X_train, _), (_, _) = mnist.load_data()

# Rescaling the images to [-1, 1] range
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)

# Defining the generator network
generator = Sequential()
generator.add(Dense(256, input_dim=100))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(512))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(1024))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(28 * 28 * 1, activation='tanh'))
generator.add(Reshape((28, 28, 1)))

# Defining the discriminator network
discriminator = Sequential()
discriminator.add(Flatten(input_shape=(28, 28, 1)))
discriminator.add(Dense(512))
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dense(256))
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dense(1, activation='sigmoid'))

# Compiling the generator
generator.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5))

# Compiling the discriminator
discriminator.compile(loss='binary_crossentropy',
                      optimizer=Adam(0.0002, 0.5),
                      metrics=['accuracy'])

# Combining the generator and discriminator
z = Input(shape=(100,))
img = generator(z)
discriminator.trainable = False
valid = discriminator(img)
combined = Model(z, valid)
combined.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5))

# Training the GAN
epochs = 10000
batch_size = 128
sample_interval = 1000

for epoch in range(epochs):
    # Training the discriminator
    idx = np.random.randint(0, X_train.shape[0], batch_size)
    real_imgs = X_train[idx]
    noise = np.random.normal(0, 1, (batch_size, 100))
    fake_imgs = generator.predict(noise)
    d_loss_real = discriminator.train_on_batch(real_imgs, np.ones((batch_size, 1)))
    d_loss_fake = discriminator.train_on_batch(fake_imgs, np.zeros((batch_size, 1)))
    d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

    # Training the generator
    noise = np.random.normal(0, 1, (batch_size, 100))
    valid_y = np.ones((batch_size, 1))
    g_loss = combined.train_on_batch(noise, valid_y)

    # Printing the progress
    if epoch % sample_interval == 0:
        print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100 * d_loss[1], g_loss))

        # Saving generated images
        r, c = 5, 5
        noise = np.random.normal(0, 1, (r * c, 100))
        gen_imgs = generator.predict(noise)
        gen_imgs = 0.5 * gen_imgs + 0.5
        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i, j].imshow(gen_imgs[cnt, :, :, 0], cmap='gray')
                axs[i, j].axis('off')
                cnt += 1
        fig.savefig("generated_images/%d.png" % epoch)
        plt.close()
```

在训练过程中,GAN会不断生成假图像,并将它们与真实图像一起喂给鉴别器(即图像分类器)。鉴别器会尝试将真实图像与假图像分开,同时生成器会尝试产生更逼真的图像。训练完成后,我们可以使用生成器来生成新的手写数字图像。

AI Gan 股票管理系统是一种基于人工智能的股票投资和管理系统。该系统利用深度学习和自然语言处理等技术,对股票市场进行数据分析和预测,以实现更精确的投资和管理决策。此外,AI Gan 股票管理系统还提供实时行情分析、投资组合管理以及风险控制等功能,以帮助用户实现更高的投资回报和风险控制。

一个简单的AI股票管理例子

以下是一个简单的AI股票管理例子:

1.数据收集: 首先,AI系统会从不同的股票交易市场和新闻源中收集大量数据,如股票价格、市值、财务报表、新闻事件等。这些数据将用于后续的分析。

2.数据处理: 接下来,AI系统会对收集的数据进行处理,比如去重、清洗、归一化等,使其能够更好地被分析和理解。

3.数据分析: 然后,AI系统会使用机器学习算法对数据进行分析,识别出股票价格的趋势、潜在的投资机会、风险等。AI系统还可以使用自然语言处理技术对新闻文本进行分析,以了解可能影响股票价格的事件。

4.决策制定: 最后,AI系统会根据分析结果制定股票投资策略,如买入/卖出建议、分散投资建议等。这些建议可能会在不同的时间和市场条件下发生变化,因此AI系统将不断更新其分析和建议。

总的来说,AI股票管理系统可以提供更精准、更及时、更可靠的投资建议,帮助投资者做出更明智的投资决策并获得更高的收益。

相关推荐
缘友一世8 分钟前
PyTorch深度学习实战【10】之神经网络的损失函数
pytorch·深度学习·神经网络
却道天凉_好个秋20 分钟前
深度学习(六):代价函数的意义
人工智能·深度学习·代价函数
星期天要睡觉1 小时前
深度学习——基于 PyTorch 的 CBOW 模型实现自然语言处理
pytorch·深度学习·自然语言处理
Wiktok1 小时前
[Wit]CnOCR模型训练全流程简化记录(包括排除BUG)
python·深度学习·bug
胡乱编胡乱赢2 小时前
关于在pycharm终端连接服务器
人工智能·深度学习·pycharm·终端连接服务器
盼小辉丶2 小时前
DenseNet详解与实现
深度学习·keras·tensorflow2
东方佑4 小时前
当人眼遇见神经网络:用残差结构模拟视觉调焦的奇妙类比
人工智能·深度学习·神经网络
梦想的初衷~4 小时前
R语言生物群落数据分析全流程:从数据清洗到混合模型与结构方程
机器学习·r语言·生态·环境
智驱力人工智能4 小时前
深度学习在离岗检测中的应用
人工智能·深度学习·安全·视觉检测·离岗检测
hjs_deeplearning4 小时前
认知篇#12:基于非深度学习方法的图像特征提取
人工智能·深度学习·目标检测