线性代数入门与学习笔记

该内容为重拾部分线性代数知识的学习笔记,内容上更多的是为了解决问题而学习的内容,并非系统化的学习。

针对的问题为:Music算法推导求解过程中的矩阵计算知识。

学习的内容包括:矩阵原理、矩阵行列式、矩阵的秩、线性变换矩阵变换、单位矩阵与逆矩阵、特征值和特征向量。

推荐学习视频:bilibili的视频:【线性代数全集从入门到精通(清楚易懂,看过的都说好,哈哈)】 https://www.bilibili.com/video/BV1wL411H7x1/?share_source=copy_web\&vd_source=a0df23ab5f45bf4a580c20684f4a6705

一. 矩阵

  1. 线性方程组

    线性方程组,多元x1 x2 x3等组成的线性方程组。线性方程组的解只有三种情况:0个解、1个(组)解和无穷多个解。

  2. 增广矩阵

    增广矩阵为系数矩阵+常数项矩阵,是一种更简单的表达。

  3. 理想矩阵:阶梯型矩阵、对角矩阵

    通过对矩阵进行初等行变换,即行的倍数、行的叠加、行的倍数再叠加,矩阵的解不变。

    从最下面一行开始消元,得到理想型矩阵可以方便求解元,该方法叫做高斯消元法。

    阶梯型矩阵就可以方便求解,对角矩阵则是更加理想的矩阵。

  4. 矩阵与向量

    空间中的向量,可以用多个正交单位向量的组合表示。

    多个向量的线性组合为这些向量的向量空间。

    线性相关:多个向量的线性组合能够等于0,其中他们的系数不全为0,即线性相关,否则线性无关。

    定义:n+1个n维向量一定是线性相关的。因为n个不相关的向量已经组成了整个n维的自由空间,多一个肯定是在这个自由空间中的。

    向量的计算:数乘、加法、线性组合。

  5. 齐次方程组

    齐次方程组的常数矩阵为0,即Ax = 0

  6. 矩阵乘法

    矩阵乘法中,左边矩阵的列数要等于右边矩阵的行数。

二、矩阵行列式

  1. 行列式可以Det(A)表示
  2. 行列式为符号系数+子矩阵行列式的叠加。

三、矩阵秩

  1. 秩的定义
    矩阵的秩为最高阶非零子式的阶数。
  2. 秩对求解个数的意义
    系数矩阵的秩=增广矩阵的秩:1个解
    系数矩阵的秩<增广矩阵的秩:0个解
    系数矩阵的秩>增广矩阵的秩:无穷个解

四、线性变换、矩阵变换

  1. 线性变换和矩阵变换
    这两种变换是可以在一定程度上转换的。

五、单位矩阵与逆矩阵

  1. 单位矩阵
  2. 逆矩阵
    逆矩阵与原矩阵的乘积为单位矩阵。
    逆矩阵的计算可以由下述公式计算,分母为矩阵行列式,也可以用Det(A)表示,选取最佳的一行(0比较多的行)进行计算。分子为伴随矩阵。

六、特征值与特征向量

  1. 特征值和特征向量

    矩阵和特征向量的乘积,正好为一个特征值与该特征向量的乘积。即矩阵的乘积,只改变该方向的大小,而不改变方向。

    特征向量表达了方向,特征值表达了大小。

    个人理解:特征向量意味着该矩阵在这个方向上的映射。

  2. 特征值计算

    Ax = λx

    Ax = λIx

    (A-λI)x = 0

    Det(A-λI) = 0

    得到多个特征值

  3. 特征向量的计算

    带入特征值到上式,进行计算和求解。

  4. 意义

    几何意义为变换效果只发生缩放,不发生其他如旋转、平移。

    代数意义为矩阵的内部结构进行了分解和化解。

七、协方差矩阵

  1. 协方差矩阵
    个人理解:表达了两个矩阵之间的关联性。
相关推荐
RadNIkMan24 分钟前
Python学习(二)操作列表
网络·python·学习
笑鸿的学习笔记25 分钟前
ROS2笔记之服务通信和基于参数的服务通信区别
android·笔记·microsoft
yanxy5121 小时前
【TS学习】(15)分布式条件特性
前端·学习·typescript
lalapanda1 小时前
UE5学习记录 part13
学习·ue5
高林雨露1 小时前
Java对比学习Kotlin的详细指南(一)
java·学习·kotlin
安建资小栗子2 小时前
2025年汽车加气站操作工备考题库
笔记
齐尹秦2 小时前
HTML5 Web Workers 学习笔记
笔记·学习
DarkBule_2 小时前
零基础驯服GitHub Pages
css·学习·html·github·html5·web
余多多_zZ3 小时前
鸿蒙学习手册(HarmonyOSNext_API16)_应用开发UI设计:Swiper
学习·ui·华为·harmonyos·鸿蒙系统
淬渊阁3 小时前
汇编学习之《扩展指令指针寄存器》
汇编·学习