形态学操作—形态学梯度

形态学梯度(Morphological Gradient)是图像形态学处理中的一种操作,它通过对图像的膨胀和腐蚀操作之间的差异来突出图像中的边缘信息。这种操作有助于增强图像中物体的边界,使它们更加突出。

在数学上,形态学梯度的计算可以通过以下方式进行:

设定一个结构元素(通常是一个小的矩形或圆形核),然后对图像进行膨胀和腐蚀操作。形态学梯度被定义为图像的膨胀操作减去腐蚀操作的结果。

形态学梯度的作用是突出图像中物体的边缘或轮廓。当我们对图像中的对象进行分割、边缘检测或特征提取时,形态学梯度可以很有用。它可以帮助定位物体的边界,提取轮廓信息,或者用于图像预处理的步骤之一。

下面是形态学梯度的公式:

形态学梯度: Gradient = Dilation ( f ) − Erosion ( f ) \text{Gradient} = \text{Dilation}(f) - \text{Erosion}(f) Gradient=Dilation(f)−Erosion(f)

其中, Dilation ( f ) \text{Dilation}(f) Dilation(f) 表示对图像 f f f 进行膨胀操作, Erosion ( f ) \text{Erosion}(f) Erosion(f)表示对图像 f f f进行腐蚀操作。

在OpenCV中,可以使用以下代码来实现图像的形态学梯度操作:

python 复制代码
import cv2
import numpy as np

def show_images(image):
    cv2.namedWindow('image',cv2.WINDOW_KEEPRATIO)
    cv2.imshow('image',image)
    cv2.waitKey()
    cv2.destroyAllWindows()

def Morphological_Gradient(image):
    # 定义结构元素(这里使用3x3的矩形核)
    kernel = np.ones((3, 3), np.uint8)
    # 对图像进行膨胀和腐蚀操作
    dilated_image = cv2.dilate(image, kernel, iterations=1)
    eroded_image = cv2.erode(image, kernel, iterations=1)
    # 计算形态学梯度
    gradient = cv2.subtract(dilated_image, eroded_image)
    return gradient

if __name__ == '__main__':
    # 读取图像
    img = cv2.imread('cat-dog.png', flags=0)
    re_img=Morphological_Gradient(img)
    # top_row = np.hstack((img, re_img[0]))
    # bottom_row = np.hstack((re_img[1], re_img[2])) #水平
    # combined_img = np.vstack((img, re_img))# 垂直
    combined_img=np.hstack((img,re_img))
    show_images(combined_img)
相关推荐
paopaokaka_luck4 分钟前
基于SpringBoot+Vue的数码交流管理系统(AI问答、协同过滤算法、websocket实时聊天、Echarts图形化分析)
vue.js·人工智能·spring boot·websocket·echarts
星星也在雾里9 分钟前
【管理多版本Python环境】Anaconda安装及使用
python·anaconda
用户37215742613520 分钟前
使用 Python 将 CSV 文件转换为 PDF 的实践指南
python
大佬,救命!!!21 分钟前
算法实现迭代2_堆排序
数据结构·python·算法·学习笔记·堆排序
arron889925 分钟前
Visual Studio 2017(VS2017)可以编译 OpenCV 4.5.5 为 32 位(x86)版本
ide·opencv·visual studio
youngfengying37 分钟前
身体活动(physical activity)---深度学习
人工智能·深度学习
START_GAME1 小时前
语音合成系统---IndexTTS2:环境配置与实战
人工智能·语音识别
2501_930799241 小时前
访答知识库#Pdf转word#人工智能#Al编辑器#访答RAG#企业知识库,个人知识库,本地知识库,访答编辑器,访答浏览器……
人工智能
max5006001 小时前
多GPU数据并行训练中GPU利用率不均衡问题深度分析与解决方案
人工智能·机器学习·分类·数据挖掘