形态学操作—形态学梯度

形态学梯度(Morphological Gradient)是图像形态学处理中的一种操作,它通过对图像的膨胀和腐蚀操作之间的差异来突出图像中的边缘信息。这种操作有助于增强图像中物体的边界,使它们更加突出。

在数学上,形态学梯度的计算可以通过以下方式进行:

设定一个结构元素(通常是一个小的矩形或圆形核),然后对图像进行膨胀和腐蚀操作。形态学梯度被定义为图像的膨胀操作减去腐蚀操作的结果。

形态学梯度的作用是突出图像中物体的边缘或轮廓。当我们对图像中的对象进行分割、边缘检测或特征提取时,形态学梯度可以很有用。它可以帮助定位物体的边界,提取轮廓信息,或者用于图像预处理的步骤之一。

下面是形态学梯度的公式:

形态学梯度: Gradient = Dilation ( f ) − Erosion ( f ) \text{Gradient} = \text{Dilation}(f) - \text{Erosion}(f) Gradient=Dilation(f)−Erosion(f)

其中, Dilation ( f ) \text{Dilation}(f) Dilation(f) 表示对图像 f f f 进行膨胀操作, Erosion ( f ) \text{Erosion}(f) Erosion(f)表示对图像 f f f进行腐蚀操作。

在OpenCV中,可以使用以下代码来实现图像的形态学梯度操作:

python 复制代码
import cv2
import numpy as np

def show_images(image):
    cv2.namedWindow('image',cv2.WINDOW_KEEPRATIO)
    cv2.imshow('image',image)
    cv2.waitKey()
    cv2.destroyAllWindows()

def Morphological_Gradient(image):
    # 定义结构元素(这里使用3x3的矩形核)
    kernel = np.ones((3, 3), np.uint8)
    # 对图像进行膨胀和腐蚀操作
    dilated_image = cv2.dilate(image, kernel, iterations=1)
    eroded_image = cv2.erode(image, kernel, iterations=1)
    # 计算形态学梯度
    gradient = cv2.subtract(dilated_image, eroded_image)
    return gradient

if __name__ == '__main__':
    # 读取图像
    img = cv2.imread('cat-dog.png', flags=0)
    re_img=Morphological_Gradient(img)
    # top_row = np.hstack((img, re_img[0]))
    # bottom_row = np.hstack((re_img[1], re_img[2])) #水平
    # combined_img = np.vstack((img, re_img))# 垂直
    combined_img=np.hstack((img,re_img))
    show_images(combined_img)
相关推荐
Funny_AI_LAB16 分钟前
李飞飞联合杨立昆发表最新论文:超感知AI模型从视频中“看懂”并“预见”三维世界
人工智能·算法·语言模型·音视频
一晌小贪欢4 小时前
【Python数据分析】数据分析与可视化
开发语言·python·数据分析·数据可视化·数据清洗
数据皮皮侠4 小时前
区县政府税务数据分析能力建设DID(2007-2025)
大数据·数据库·人工智能·信息可视化·微信开放平台
极小狐5 小时前
比 Cursor 更丝滑的 AI DevOps 编程智能体 - CodeRider-Kilo 正式发布!
运维·人工智能·devops
半臻(火白)6 小时前
Prompt-R1:重新定义AI交互的「精准沟通」范式
人工智能
菠菠萝宝6 小时前
【AI应用探索】-10- Cursor实战:小程序&APP - 下
人工智能·小程序·kotlin·notepad++·ai编程·cursor
dreams_dream6 小时前
Flask
后端·python·flask
连线Insight6 小时前
架构调整后,蚂蚁继续死磕医疗健康“硬骨头”
人工智能
小和尚同志6 小时前
十月份 AI Coding 实践!Qoder、CC、Codex 还是 iflow?
人工智能·aigc
mywpython6 小时前
用Python和Websockets库构建一个高性能、低延迟的实时消息推送服务
python·websocket