Python实现FA萤火虫优化算法优化卷积神经网络回归模型(CNN回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解 ),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1 . 项目背景

萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。

本项目通过FA萤火虫优化算法寻找最优的参数值来优化CNN回归模型。

2 . 数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

|------------|--------------|------------|
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |

数据详情如下(部分展示):

3. 数据预处理

3.1 用P andas 工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3. 3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4. 探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5. 特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建FA萤火虫优化算法优化CNN回归模型

主要使用FA萤火虫优化算法优化CNN回归算法,用于目标回归。

6.1 FA萤火虫优化算法寻找的最优参数

最优参数:

6.2 最优参数值构建模型

|------------|--------------|--------------------|
| 编号 | 模型名称 | 参数 |
| 1 | CNN回归模型 | units=best_units |
| 2 | CNN回归模型 | epochs=best_epochs |

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

7 . 模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

|--------------|--------------|-------------|
| 模型名称 | 指标名称 | 指标值 |
| 测试集 |||
| CNN回归模型 | R方 | 0.9126 |
| CNN回归模型 | 均方误差 | 3568.1599 |
| CNN回归模型 | 可解释方差值 | 0.9141 |
| CNN回归模型 | 平均绝对误差 | 45.9236 |

从上表可以看出,R方0.9126,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。

8. 结论与展望

综上所述,本文采用了FA萤火虫优化算法寻找CNN回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

python 复制代码
# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/18E_dRXuXNgFyDXwWWtb1AA 
提取码:5j8a

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


相关推荐
小途软件16 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
扫地的小何尚17 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
wanglei20070817 小时前
生产者消费者
开发语言·python
清水白石00818 小时前
《从零到进阶:Pydantic v1 与 v2 的核心差异与零成本校验实现原理》
数据库·python
昵称已被吞噬~‘(*@﹏@*)’~18 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
Yeats_Liao18 小时前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
2501_9418779818 小时前
从配置热更新到运行时自适应的互联网工程语法演进与多语言实践随笔分享
开发语言·前端·python
酩酊仙人18 小时前
fastmcp构建mcp server和client
python·ai·mcp
格林威19 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
且去填词19 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek