Python实现FA萤火虫优化算法优化卷积神经网络回归模型(CNN回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解 ),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1 . 项目背景

萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。

本项目通过FA萤火虫优化算法寻找最优的参数值来优化CNN回归模型。

2 . 数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

|------------|--------------|------------|
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |

数据详情如下(部分展示):

3. 数据预处理

3.1 用P andas 工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3. 3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4. 探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5. 特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建FA萤火虫优化算法优化CNN回归模型

主要使用FA萤火虫优化算法优化CNN回归算法,用于目标回归。

6.1 FA萤火虫优化算法寻找的最优参数

最优参数:

6.2 最优参数值构建模型

|------------|--------------|--------------------|
| 编号 | 模型名称 | 参数 |
| 1 | CNN回归模型 | units=best_units |
| 2 | CNN回归模型 | epochs=best_epochs |

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

7 . 模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

|--------------|--------------|-------------|
| 模型名称 | 指标名称 | 指标值 |
| 测试集 |||
| CNN回归模型 | R方 | 0.9126 |
| CNN回归模型 | 均方误差 | 3568.1599 |
| CNN回归模型 | 可解释方差值 | 0.9141 |
| CNN回归模型 | 平均绝对误差 | 45.9236 |

从上表可以看出,R方0.9126,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。

8. 结论与展望

综上所述,本文采用了FA萤火虫优化算法寻找CNN回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

python 复制代码
# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/18E_dRXuXNgFyDXwWWtb1AA 
提取码:5j8a

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


相关推荐
白杆杆红伞伞5 分钟前
10_聚类
机器学习·支持向量机·聚类
Humbunklung15 分钟前
PySide6 GUI 学习笔记——常用类及控件使用方法(多行文本控件QTextEdit)
笔记·python·学习·pyqt
火车叼位44 分钟前
使用 uv 工具在 Windows 系统快速下载安装与切换 Python
python
心扬1 小时前
python网络编程
开发语言·网络·python·tcp/ip
忧陌6061 小时前
DAY 44 预训练模型
python
点云SLAM1 小时前
PyTorch 中contiguous函数使用详解和代码演示
人工智能·pytorch·python·3d深度学习·contiguous函数·张量内存布局优化·张量操作
小天才才2 小时前
【自然语言处理】大模型时代的数据标注(主动学习)
人工智能·机器学习·语言模型·自然语言处理
尘浮7282 小时前
60天python训练计划----day45
开发语言·python
苏苏susuus2 小时前
机器学习:集成学习概念和分类、随机森林、Adaboost、GBDT
机器学习·分类·集成学习
哆啦A梦的口袋呀2 小时前
基于Python学习《Head First设计模式》第六章 命令模式
python·学习·设计模式