从零构建属于自己的GPT系列4:模型训练3(训练过程解读、序列填充函数、损失计算函数、评价函数、代码逐行解读)

🚩🚩🚩Hugging Face 实战系列 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在PyCharm中进行
本篇文章配套的代码资源已经上传

从零构建属于自己的GPT系列1:数据预处理
从零构建属于自己的GPT系列2:模型训练1
从零构建属于自己的GPT系列3:模型训练2
从零构建属于自己的GPT系列4:模型训练3

6 序列填充函数

python 复制代码
def collate_fn(batch):
    input_ids = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=5)
    labels = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=-100)
    return input_ids, labels

7 损失计算函数

python 复制代码
def caculate_loss(logit, target, pad_idx, smoothing=True):
    if smoothing:
        logit = logit[..., :-1, :].contiguous().view(-1, logit.size(2))
        target = target[..., 1:].contiguous().view(-1)

        eps = 0.1
        n_class = logit.size(-1)

        one_hot = torch.zeros_like(logit).scatter(1, target.view(-1, 1), 1)
        one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
        log_prb = F.log_softmax(logit, dim=1)

        non_pad_mask = target.ne(pad_idx)
        loss = -(one_hot * log_prb).sum(dim=1)
        loss = loss.masked_select(non_pad_mask).mean()  # average later
    else:
        # loss = F.cross_entropy(predict_logit, target, ignore_index=pad_idx)
        logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))
        labels = target[..., 1:].contiguous().view(-1)
        loss = F.cross_entropy(logit, labels, ignore_index=pad_idx)
    return loss

8 评价函数

python 复制代码
def calculate_acc(logit, labels, ignore_index=-100):
    logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))
    labels = labels[..., 1:].contiguous().view(-1)

    _, logit = logit.max(dim=-1)  # 对于每条数据,返回最大的index
    # 进行非运算,返回一个tensor,若labels的第i个位置为pad_id,则置为0,否则为1
    non_pad_mask = labels.ne(ignore_index)
    n_correct = logit.eq(labels).masked_select(non_pad_mask).sum().item()
    n_word = non_pad_mask.sum().item()
    return n_correct, n_word

9 训练过程解读

从零构建属于自己的GPT系列1:数据预处理
从零构建属于自己的GPT系列2:模型训练1
从零构建属于自己的GPT系列3:模型训练2
从零构建属于自己的GPT系列4:模型训练3

相关推荐
SHIPKING3932 分钟前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
伍哥的传说5 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js
要努力啊啊啊7 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
**梯度已爆炸**9 小时前
NLP文本预处理
人工智能·深度学习·nlp
Liudef069 小时前
FLUX.1-Kontext 高效训练 LoRA:释放大语言模型定制化潜能的完整指南
人工智能·语言模型·自然语言处理·ai作画·aigc
静心问道9 小时前
大型语言模型中的自动化思维链提示
人工智能·语言模型·大模型
汀沿河9 小时前
2 大模型高效参数微调;prompt tunning
人工智能·深度学习·prompt
前端小盆友11 小时前
从零实现一个GPT 【React + Express】--- 【3】解析markdown,处理模型记忆
gpt·react.js
Blossom.11812 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
难受啊马飞2.012 小时前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习