从零构建属于自己的GPT系列4:模型训练3(训练过程解读、序列填充函数、损失计算函数、评价函数、代码逐行解读)

🚩🚩🚩Hugging Face 实战系列 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在PyCharm中进行
本篇文章配套的代码资源已经上传

从零构建属于自己的GPT系列1:数据预处理
从零构建属于自己的GPT系列2:模型训练1
从零构建属于自己的GPT系列3:模型训练2
从零构建属于自己的GPT系列4:模型训练3

6 序列填充函数

python 复制代码
def collate_fn(batch):
    input_ids = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=5)
    labels = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=-100)
    return input_ids, labels

7 损失计算函数

python 复制代码
def caculate_loss(logit, target, pad_idx, smoothing=True):
    if smoothing:
        logit = logit[..., :-1, :].contiguous().view(-1, logit.size(2))
        target = target[..., 1:].contiguous().view(-1)

        eps = 0.1
        n_class = logit.size(-1)

        one_hot = torch.zeros_like(logit).scatter(1, target.view(-1, 1), 1)
        one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
        log_prb = F.log_softmax(logit, dim=1)

        non_pad_mask = target.ne(pad_idx)
        loss = -(one_hot * log_prb).sum(dim=1)
        loss = loss.masked_select(non_pad_mask).mean()  # average later
    else:
        # loss = F.cross_entropy(predict_logit, target, ignore_index=pad_idx)
        logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))
        labels = target[..., 1:].contiguous().view(-1)
        loss = F.cross_entropy(logit, labels, ignore_index=pad_idx)
    return loss

8 评价函数

python 复制代码
def calculate_acc(logit, labels, ignore_index=-100):
    logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))
    labels = labels[..., 1:].contiguous().view(-1)

    _, logit = logit.max(dim=-1)  # 对于每条数据,返回最大的index
    # 进行非运算,返回一个tensor,若labels的第i个位置为pad_id,则置为0,否则为1
    non_pad_mask = labels.ne(ignore_index)
    n_correct = logit.eq(labels).masked_select(non_pad_mask).sum().item()
    n_word = non_pad_mask.sum().item()
    return n_correct, n_word

9 训练过程解读

从零构建属于自己的GPT系列1:数据预处理
从零构建属于自己的GPT系列2:模型训练1
从零构建属于自己的GPT系列3:模型训练2
从零构建属于自己的GPT系列4:模型训练3

相关推荐
another heaven3 分钟前
【深度学习 YOLO官方模型全解析】
人工智能·深度学习·yolo
百***243711 分钟前
GPT5.1 vs Claude-Opus-4.5 全维度对比及快速接入实战
大数据·人工智能·gpt
极度畅想2 小时前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
AI浩3 小时前
【Block总结】门控注意力机制,最新注意力机制|即插即用|最佳论文奖
人工智能·语言模型·自然语言处理
百***07453 小时前
GPT-5.2国内稳定接入实战指南:中转调用全链路方案(Python适配)
python·gpt·php
CoovallyAIHub4 小时前
从“模仿”到“进化”!华科&小米开源MindDrive:在线强化学习重塑「语言-动作」闭环驾驶
深度学习·算法·计算机视觉
OpenBayes4 小时前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
CoovallyAIHub4 小时前
SAM 真的开始「分割一切」,从图像到声音,Meta 开源 SAM Audio
深度学习·算法·计算机视觉
五月底_4 小时前
GRPO参数详解
人工智能·深度学习·nlp·rl·grpo