从零构建属于自己的GPT系列4:模型训练3(训练过程解读、序列填充函数、损失计算函数、评价函数、代码逐行解读)

🚩🚩🚩Hugging Face 实战系列 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在PyCharm中进行
本篇文章配套的代码资源已经上传

从零构建属于自己的GPT系列1:数据预处理
从零构建属于自己的GPT系列2:模型训练1
从零构建属于自己的GPT系列3:模型训练2
从零构建属于自己的GPT系列4:模型训练3

6 序列填充函数

python 复制代码
def collate_fn(batch):
    input_ids = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=5)
    labels = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=-100)
    return input_ids, labels

7 损失计算函数

python 复制代码
def caculate_loss(logit, target, pad_idx, smoothing=True):
    if smoothing:
        logit = logit[..., :-1, :].contiguous().view(-1, logit.size(2))
        target = target[..., 1:].contiguous().view(-1)

        eps = 0.1
        n_class = logit.size(-1)

        one_hot = torch.zeros_like(logit).scatter(1, target.view(-1, 1), 1)
        one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
        log_prb = F.log_softmax(logit, dim=1)

        non_pad_mask = target.ne(pad_idx)
        loss = -(one_hot * log_prb).sum(dim=1)
        loss = loss.masked_select(non_pad_mask).mean()  # average later
    else:
        # loss = F.cross_entropy(predict_logit, target, ignore_index=pad_idx)
        logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))
        labels = target[..., 1:].contiguous().view(-1)
        loss = F.cross_entropy(logit, labels, ignore_index=pad_idx)
    return loss

8 评价函数

python 复制代码
def calculate_acc(logit, labels, ignore_index=-100):
    logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))
    labels = labels[..., 1:].contiguous().view(-1)

    _, logit = logit.max(dim=-1)  # 对于每条数据,返回最大的index
    # 进行非运算,返回一个tensor,若labels的第i个位置为pad_id,则置为0,否则为1
    non_pad_mask = labels.ne(ignore_index)
    n_correct = logit.eq(labels).masked_select(non_pad_mask).sum().item()
    n_word = non_pad_mask.sum().item()
    return n_correct, n_word

9 训练过程解读

从零构建属于自己的GPT系列1:数据预处理
从零构建属于自己的GPT系列2:模型训练1
从零构建属于自己的GPT系列3:模型训练2
从零构建属于自己的GPT系列4:模型训练3

相关推荐
semantist@语校2 分钟前
如何为“地方升学导向型”语校建模?Prompt 框架下的宇都宫日建工科专门学校解析(7 / 500)
人工智能·百度·ai·语言模型·langchain·prompt·github
未来世界209915 分钟前
ChatGPT Agent全网一手评价,看这一篇就够了 | AI新玩法
chatgpt·agent
不会计算机的g_c__b32 分钟前
深入解析文本分类技术全景:从特征提取到深度学习架构
深度学习·分类·数据挖掘
呆头鹅AI工作室34 分钟前
[2025CVPR-目标检测方向] CorrBEV:多视图3D物体检测
人工智能·深度学习·神经网络·目标检测·计算机视觉·3d·卷积神经网络
AndrewHZ2 小时前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
静心问道3 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
亲持红叶3 小时前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
石迹耿千秋8 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
Mr.小海11 小时前
常用 Benchmark 总结-GPT 4.1、GPT 4.5、DeepSeek模型
gpt
joe023511 小时前
电脑安装 Win10 提示无法在当前分区上安装Windows的解决办法
windows·gpt·电脑·uefi