深度学习记录--神经网络表示及其向量化

神经网络表示

如下图

就这个神经网络图来说,它有三层,分别是输入层 (Input layer ),隐藏层 (Hidden layer ),输出层 (Output layer)

对于其他的神经网络,隐藏层可以有很多层

一般来说,不把输入层算作一个标准的层,所以这是一个双层神经网络

神经网络的计算

对于每一层的每个节点,以logistic为例,每个节点会得出一个a值(y的预测值)

然后这个a值作为新的输入值进入下一层的节点,重复上一个过程

最终输出最终预测值

所以,每个节点 都包含一个完整的logistic计算

如下图所示,第一层的a值代入到第二层的计算中

符号表示

从神经网络开始,出现了大量的符号,本弱鸡刚开始学也有点糊涂,经过好一番思考,才明白了每个符号的表示

层的表示

从输入层开始,每一层都需要被表示,一般用方括号上标 表示第几层,注意,输入层为第0层

这个符号表示第i层的x值

样本表示

对于多份样本数据,一般用圆括号上标表示第几份样本数据

这个表示第i份样本数据,注意,每份样本数据包含了所有的特征变量(它的表示见下)

每份样本中特征变量的表示

上面说了每份样本数据包含了所有特征变量,特征变量如何表示

一般用下标表示第几个特征变量

这个表示某层第i个特征变量,nx为特征变量的总数

完整表示

这个表示第1层第3份样本数据中的第2个特征变量

向量化实现神经网络

之前谈了向量化,现在用完整符号表示神经网络的向量化实现,见下图

以X举例,每个大X表示每层的X数据,大X中每列表示某份样本数据,自上而下是特征变量

其他符号同理,都是用矩阵实现

相关推荐
亚马逊云开发者几秒前
使用Amazon Q Developer CLI快速构建市场分析智能体
人工智能
Coding茶水间6 分钟前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Rose sait16 分钟前
【环境配置】Linux配置虚拟环境pytorch
linux·人工智能·python
福客AI智能客服21 分钟前
从被动响应到主动赋能:家具行业客服机器人的革新路径
大数据·人工智能
司南OpenCompass37 分钟前
衡量AI真实科研能力!司南科学智能评测上线
人工智能·多模态模型·大模型评测·司南评测
罗宇超MS40 分钟前
如何看待企业自建AI知识库?
人工智能·alm
土星云SaturnCloud1 小时前
液冷“内卷”:在局部优化与系统重构之间,寻找第三条路
服务器·人工智能·ai·计算机外设
智界前沿1 小时前
集之互动AI创意视频解决方案:商业级可控,让品牌创意从“灵感”直达“落地”
人工智能·aigc
baby_hua1 小时前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习