手眼标定 - 最终精度和误差优化心得

手眼标定 - 标定误差优化项

为减少最终手眼标定的误差,可做或注意以下步骤(环节)。

一、TCP标定误差优化

1、注意标定针摆放范围

如:在实际焊接、码垛等工作时,机械臂的工作范围或摆动范围主要集中在X轴的[150mm , 1500mm]范围,Y轴的[-150mm , 350mm]范围,Z轴的[-200mm , 600mm]范围,那么在做TCP时,应将标定针(或标定点)摆放在X =(150 + 1500)/ 2 = 825mm 左右的位置,而不宜摆放在过于靠近最小值和最大值的附近。(Y轴和Z轴计算方式同理)

2、TCP标定时的点次态与工作姿态尽可能保持相近

如:实际焊接时枪头与XY平面的夹角在[30-50]°之间,焊接的方向一般指向+X+Y、+X-Y、-X+Y、-X-Y,那么做TCP时的点位也应该与焊接时的姿态、夹角保持一致或相近。

二、深度相机对齐矩阵误差

1、手动计算对齐矩阵

市面上常见的深度相机一般有彩色点云和非彩色点云(深度点云),彩色点云和深度点云之间一般有对齐矩阵,该矩阵可通过上位机获取,但一般都不够精准。尽量自己计算。

方法: 同一位置下,分别进行彩色点云和深度点云拍照,然后将两点云进行配准(配准算法可使用Open3D或PCL可提供的接口),获取最终的配准矩阵,即我们自己计算出的对齐矩阵。然后重复N次,计算对齐矩阵的平均值(N越大,对齐矩阵精度越高)。

三、手眼标定拍照姿态

1、TCP标定姿态优先

手眼标定时,处于拍照姿态时此时的工具的姿态(本文指的是:工具向量与机器人坐标系下的XY平面的夹角)尽可能与做TCP标定时(工具向量与机器人坐标系下的XY平面的夹角)的姿态保持一致(或相近),如果在该姿态下相机无法拍到棋盘格,则可将棋盘格倾斜放置。倾斜角度慢慢调整,直到工具姿态接近TCP姿态且相机可以拍到棋盘格为最佳。
局限性: 如果相机精度不是很高,得通过增加拍照次数的方式减少手眼误差,则该方案可能有局限性,因为棋盘格斜立摆放拍照姿态会受到限制,一般只能让相机朝XY平面方向上的一个固定范围方向,不能绕Z轴拍照360°,所以最终的手眼矩阵不具有可靠的全方位都可用的最佳效果!

2、水平放置棋盘格优先

水平放置棋盘格方法,该方法可显著增加拍照次数:拍照姿态一般让相机Z轴与棋盘格平面法向量夹角处于0°-25°范围(夹角过大亦会影响手眼矩阵精度),让相机调整至可拍到整个棋盘格的位置,然后绕Z轴360°都拍下,精度差的相机拍照次数最好在大几十次甚至100次以上,而精度高的工业相机配合精度高的机器人手眼拍照次数可控制在10次以下。

相关推荐
宋138102797203 小时前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉
禁默3 小时前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制
Robot25117 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
FreeIPCC20 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
施努卡机器视觉1 天前
电解车间铜业机器人剥片技术是现代铜冶炼过程中自动化和智能化的重要体现
运维·机器人·自动化
zhd15306915625ff1 天前
库卡机器人日常维护
网络·机器人·自动化·机器人备件
古月居GYH1 天前
ROS一键安装脚本
人工智能·机器人·ros
清流君1 天前
【运动规划】移动机器人运动规划与轨迹优化全解析 | 经典算法总结
人工智能·笔记·算法·机器人·自动驾驶·运动规划
Matlab程序猿小助手2 天前
【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
开发语言·嵌入式硬件·算法·matlab·机器人·无人机
xx小寂2 天前
ubuntu16.04在ros使用USB摄像头-解决could not open /dev/video0问题
ubuntu·机器人