手眼标定 - 最终精度和误差优化心得

手眼标定 - 标定误差优化项

为减少最终手眼标定的误差,可做或注意以下步骤(环节)。

一、TCP标定误差优化

1、注意标定针摆放范围

如:在实际焊接、码垛等工作时,机械臂的工作范围或摆动范围主要集中在X轴的[150mm , 1500mm]范围,Y轴的[-150mm , 350mm]范围,Z轴的[-200mm , 600mm]范围,那么在做TCP时,应将标定针(或标定点)摆放在X =(150 + 1500)/ 2 = 825mm 左右的位置,而不宜摆放在过于靠近最小值和最大值的附近。(Y轴和Z轴计算方式同理)

2、TCP标定时的点次态与工作姿态尽可能保持相近

如:实际焊接时枪头与XY平面的夹角在[30-50]°之间,焊接的方向一般指向+X+Y、+X-Y、-X+Y、-X-Y,那么做TCP时的点位也应该与焊接时的姿态、夹角保持一致或相近。

二、深度相机对齐矩阵误差

1、手动计算对齐矩阵

市面上常见的深度相机一般有彩色点云和非彩色点云(深度点云),彩色点云和深度点云之间一般有对齐矩阵,该矩阵可通过上位机获取,但一般都不够精准。尽量自己计算。

方法: 同一位置下,分别进行彩色点云和深度点云拍照,然后将两点云进行配准(配准算法可使用Open3D或PCL可提供的接口),获取最终的配准矩阵,即我们自己计算出的对齐矩阵。然后重复N次,计算对齐矩阵的平均值(N越大,对齐矩阵精度越高)。

三、手眼标定拍照姿态

1、TCP标定姿态优先

手眼标定时,处于拍照姿态时此时的工具的姿态(本文指的是:工具向量与机器人坐标系下的XY平面的夹角)尽可能与做TCP标定时(工具向量与机器人坐标系下的XY平面的夹角)的姿态保持一致(或相近),如果在该姿态下相机无法拍到棋盘格,则可将棋盘格倾斜放置。倾斜角度慢慢调整,直到工具姿态接近TCP姿态且相机可以拍到棋盘格为最佳。
局限性: 如果相机精度不是很高,得通过增加拍照次数的方式减少手眼误差,则该方案可能有局限性,因为棋盘格斜立摆放拍照姿态会受到限制,一般只能让相机朝XY平面方向上的一个固定范围方向,不能绕Z轴拍照360°,所以最终的手眼矩阵不具有可靠的全方位都可用的最佳效果!

2、水平放置棋盘格优先

水平放置棋盘格方法,该方法可显著增加拍照次数:拍照姿态一般让相机Z轴与棋盘格平面法向量夹角处于0°-25°范围(夹角过大亦会影响手眼矩阵精度),让相机调整至可拍到整个棋盘格的位置,然后绕Z轴360°都拍下,精度差的相机拍照次数最好在大几十次甚至100次以上,而精度高的工业相机配合精度高的机器人手眼拍照次数可控制在10次以下。

相关推荐
房开民7 小时前
使用海康机器人相机SDK实现基本参数配置(C语言示例)
c语言·数码相机·机器人
南山二毛8 小时前
机器人控制器开发(导航算法——导航栈关联坐标系)
人工智能·架构·机器人
猫头虎12 小时前
2025最新超详细FreeRTOS入门教程:第一章 FreeRTOS移植到STM32
stm32·单片机·嵌入式硬件·机器人·硬件架构·freertos·嵌入式实时数据库
xwz小王子16 小时前
Nature Machine Intelligence 基于强化学习的磁性微型机器人自主三维位置控制
机器人·微型机器人
IoT砖家涂拉拉16 小时前
从“找新家”到“走向全球”,布尔云携手涂鸦智能开启机器人新冒险
人工智能·机器人·ai助手·ai智能体·ai机器人
纪元A梦16 小时前
贪心算法应用:机器人路径平滑问题详解
贪心算法·机器人
陈敬雷-充电了么-CEO兼CTO1 天前
具身智能模拟器:解决机器人实机训练场景局限与成本问题的创新方案
大数据·人工智能·机器学习·chatgpt·机器人·具身智能
KlipC1 天前
特斯拉“宏图计划4.0”发布!马斯克:未来80%价值来自机器人
机器人
点云SLAM1 天前
PyTorch 中.backward() 详解使用
人工智能·pytorch·python·深度学习·算法·机器学习·机器人
vickycheung31 天前
基于RK3576的机房巡检机器人应用解决方案
机器人