手眼标定 - 最终精度和误差优化心得

手眼标定 - 标定误差优化项

为减少最终手眼标定的误差,可做或注意以下步骤(环节)。

一、TCP标定误差优化

1、注意标定针摆放范围

如:在实际焊接、码垛等工作时,机械臂的工作范围或摆动范围主要集中在X轴的[150mm , 1500mm]范围,Y轴的[-150mm , 350mm]范围,Z轴的[-200mm , 600mm]范围,那么在做TCP时,应将标定针(或标定点)摆放在X =(150 + 1500)/ 2 = 825mm 左右的位置,而不宜摆放在过于靠近最小值和最大值的附近。(Y轴和Z轴计算方式同理)

2、TCP标定时的点次态与工作姿态尽可能保持相近

如:实际焊接时枪头与XY平面的夹角在[30-50]°之间,焊接的方向一般指向+X+Y、+X-Y、-X+Y、-X-Y,那么做TCP时的点位也应该与焊接时的姿态、夹角保持一致或相近。

二、深度相机对齐矩阵误差

1、手动计算对齐矩阵

市面上常见的深度相机一般有彩色点云和非彩色点云(深度点云),彩色点云和深度点云之间一般有对齐矩阵,该矩阵可通过上位机获取,但一般都不够精准。尽量自己计算。

方法: 同一位置下,分别进行彩色点云和深度点云拍照,然后将两点云进行配准(配准算法可使用Open3D或PCL可提供的接口),获取最终的配准矩阵,即我们自己计算出的对齐矩阵。然后重复N次,计算对齐矩阵的平均值(N越大,对齐矩阵精度越高)。

三、手眼标定拍照姿态

1、TCP标定姿态优先

手眼标定时,处于拍照姿态时此时的工具的姿态(本文指的是:工具向量与机器人坐标系下的XY平面的夹角)尽可能与做TCP标定时(工具向量与机器人坐标系下的XY平面的夹角)的姿态保持一致(或相近),如果在该姿态下相机无法拍到棋盘格,则可将棋盘格倾斜放置。倾斜角度慢慢调整,直到工具姿态接近TCP姿态且相机可以拍到棋盘格为最佳。
局限性: 如果相机精度不是很高,得通过增加拍照次数的方式减少手眼误差,则该方案可能有局限性,因为棋盘格斜立摆放拍照姿态会受到限制,一般只能让相机朝XY平面方向上的一个固定范围方向,不能绕Z轴拍照360°,所以最终的手眼矩阵不具有可靠的全方位都可用的最佳效果!

2、水平放置棋盘格优先

水平放置棋盘格方法,该方法可显著增加拍照次数:拍照姿态一般让相机Z轴与棋盘格平面法向量夹角处于0°-25°范围(夹角过大亦会影响手眼矩阵精度),让相机调整至可拍到整个棋盘格的位置,然后绕Z轴360°都拍下,精度差的相机拍照次数最好在大几十次甚至100次以上,而精度高的工业相机配合精度高的机器人手眼拍照次数可控制在10次以下。

相关推荐
kyle~40 分钟前
机器人传感器系统---时间戳对齐
机器人
淮北49414 小时前
ros调试工具foxglove使用指南三:在3d空间写写画画(Panel->3D ->Scene entity)
python·学习·3d·机器人
AntResearch17 小时前
ICLR 2025 Spotlight:让机器人实现「自主进化」,蚂蚁数科、清华提出具身协同框架 BodyGen
机器人
东雁西飞20 小时前
MATLAB 控制系统设计与仿真 - 33
开发语言·算法·matlab·机器人·自动控制
郭涤生1 天前
第二章:ROS架构_《ROS机器人开发实践》_notes
架构·机器人
MobiCetus1 天前
【MachineLearning】生成对抗网络 (GAN)
linux·人工智能·python·深度学习·神经网络·生成对抗网络·机器人
古希腊掌握嵌入式的神1 天前
[ROS]ROS系统是如何协调工作机器人
机器人·ros
硅谷秋水1 天前
DataPlatter:利用最少成本数据提升机器人操控的泛化能力
人工智能·深度学习·计算机视觉·语言模型·机器人
Mr.Winter`1 天前
深度强化学习 | 基于优先级经验池的DQN算法(附Pytorch实现)
人工智能·pytorch·神经网络·机器学习·机器人·强化学习
GIS数据转换器2 天前
在机器人和无人机时代,测绘人的出路在哪里?
大数据·人工智能·信息可视化·机器人·自动驾驶·汽车·无人机