生信数据分析高效Python代码

1. Pandas + glob获取指定目录下的文件列表

python 复制代码
import pandas as pd
import glob

data_dir = "/public/data/"
# 获取文件后缀为.txt的文件列表
df_all = pd.concat([pd.read_csv(f, sep='\t') for f in glob.glob(data_dir + '*.txt')])
print(df_all)

2. 使用 enumerate 函数获取索引和值

python 复制代码
# A-K 字母列表
letter = [chr(ord('A') + i) for i in range(0, 11)]

# 输出索引和值
for idx, value in enumerate(letter):
    print(f"{idx}\t{value}")

3. 使用 zip 函数同时遍历多个列表

python 复制代码
# 0-10 数字列表
number = [n for n in range(0, 11)]
# A-K 字母列表
letter = [chr(ord('A') + i) for i in range(0, 11)]

for number, letter in zip(letter, number):
    print(f"{letter}: {number}")
    
# 0: A
# 1: B
# 2: C
# 3: D
# 4: E
# 5: F
# 6: G
# 7: H
# 8: I
# 9: J
# 10: K

4. 内置函数map + filter 过滤数据

python 复制代码
number = [n for n in range(0, 11)]

# 获取平方数
squared_numbers = list(map(lambda x: x**2, number)
print(squared_numbers) 
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

# 获取偶数
even_numbers = list(filter(lambda x: x % 2 == 0, number))
print(even_numbers)
# [0, 2, 4, 6, 8, 10]

5. 使用concurrent.futures模块实现循环的并发处理,提高计算效率

python 复制代码
import concurrent.futures
def square(num):
    return num ** 2

with concurrent.futures.ThreadPoolExecutor() as executor:
    res = list(executor.map(square, number))
    
print(res)

6. 使用asyncio模块实现异步处理,提高并发性能

python 复制代码
import asyncio
import math
async def sqrt(num):
    return math.sqrt(num)

async def calculate():
    run_tasks = [sqrt(num) for num in number]
    
    results = await asyncio.gather(*run_tasks)
    print(results)

asyncio.run(calculate())

7. 程序运行分析装饰器

python 复制代码
import time

def analysis_time(func):
    def warpper(*args, **kwargs):
        start_time = time.time()
        res = func(*args, *kwargs)
        end_time = time.time()
        print(f"{func.__name__} program run time: {end_time - start_time}s")
        return res
    return warpper

# 并行计算
import concurrent.futures
def square(num):
    return num ** 2
    
@analysis_time
def calulate(number):
    with concurrent.futures.ThreadPoolExecutor() as executor:
        res = list(executor.map(square, number))
        return res

print(calulate(number))
# calulate program run time: 0.002947568893432617s
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
相关推荐
九.九8 分钟前
高性能算子库 ops-nn 的底层架构:从调度到指令的极致优化
开发语言
比奇堡派星星9 分钟前
sed命令
linux·运维·服务器·开发语言
船神丿男人12 分钟前
C++:STL string(一)
开发语言·c++
程序员zgh17 分钟前
Linux 内存管理单元 MMU
linux·运维·服务器·c语言·开发语言·c++
想做功的洛伦兹力11 小时前
2026/2/12日打卡
开发语言·c++·算法
大模型玩家七七1 小时前
技术抉择:微调还是 RAG?——以春节祝福生成为例
android·java·大数据·开发语言·人工智能·算法·安全
逍遥德1 小时前
编程技能点小记之if-else条件分支合理用法
java·开发语言·代码规范·代码复审·极限编程·代码覆盖率
瞎某某Blinder1 小时前
DFT学习记录[3]:material project api使用方法 mp_api调取与pymatgen保存
java·笔记·python·学习
低调小一1 小时前
Fresco 图片加载全链路解析:从 SimpleDraweeView 到 Producer 责任链
android·开发语言·fresco