用相似对角矩阵加速矩阵的幂,以斐波那契数列为例

《用相似对角矩阵加速矩阵的幂,以斐波那契数列为例》

在计算机科学和线性代数领域,矩阵的幂是一个常见而重要的问题。特别是对于大型矩阵,直接计算幂可能会变得十分耗时。然而,通过相似对角矩阵的方法,我们能够以更为高效的方式解决这个问题。本文将探讨这一方法,并以斐波那契数列为例进行说明。
这个方法要保证矩阵有n个线性无关的特征向量,所以一般在知道要计算的矩阵时,或保证矩阵满足条件后使用

参考

参考

https://zhuanlan.zhihu.com/p/138285148

扩展

https://oi-wiki.org/math/poly/linear-recurrence/

什么是相似对角矩阵?

在线性代数中,如果存在一个可逆矩阵 P P P 使得 P − 1 A P = Λ P^{-1}AP = \Lambda P−1AP=Λ,其中 Λ \Lambda Λ 是对角矩阵,那么我们说矩阵 A A A 和对角矩阵 Λ \Lambda Λ 是相似的,而 P P P 就是相似变换矩阵。

矩阵的幂和斐波那契数列

考虑矩阵 A = [ 1 1 1 0 ] A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} A=[1110],这是斐波那契数列的矩阵形式。我们知道斐波那契数列的定义是 F n + 2 = F n + 1 + F n F_{n+2} = F_{n+1} + F_n Fn+2=Fn+1+Fn,其中 F 0 = 0 , F 1 = 1 F_0 = 0, F_1 = 1 F0=0,F1=1。我们可以通过计算 A n A^n An 来得到第 n n n 个斐波那契数。

相似对角矩阵的计算

首先,我们计算矩阵 A A A 的特征值和特征向量。经过计算,我们得到特征值 λ 1 ≈ 1.618 \lambda_1 \approx 1.618 λ1≈1.618 和 λ 2 ≈ − 0.618 \lambda_2 \approx -0.618 λ2≈−0.618,以及对应的特征向量。通过构建相似矩阵 P P P 和对角矩阵 Λ \Lambda Λ,我们有了相似对角矩阵的形式。

P = [ 1 + 5 2 1 − 5 2 1 1 ] P = \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & \frac{1 - \sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} P=[21+5 121−5 1]

Λ = [ 1 + 5 2 0 0 1 − 5 2 ] \Lambda = \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & 0 \\ 0 & \frac{1 - \sqrt{5}}{2} \end{bmatrix} Λ=[21+5 0021−5 ]

用相似对角矩阵加速矩阵的幂

通过相似对角矩阵的形式,我们可以高效地计算 A n A^n An。这涉及计算对角矩阵的幂,以及相似变换矩阵的逆矩阵。利用这些结果,我们可以在 O ( log ⁡ n ) O(\log n) O(logn) 的时间内得到 A n A^n An。

斐波那契数列的计算

最终,我们将这个方法应用于斐波那契数列。通过计算 A n A^n An,我们可以高效地获得斐波那契数列的第 n n n 个数。这个方法相较于直接计算幂的方式在大型 n n n 值时更为高效。

示例

https://leetcode.cn/problems/climbing-stairs/description/?envType=daily-question\&envId=2023-12-10

cpp 复制代码
class Solution
{
public:
    int climbStairs(int n)
    {
        if (n == 1)
            return 1;

        auto mul = [&](std::vector<std::vector<double>> a, std::vector<std::vector<double>> b)
        {
            int n = a.size(), m = a.front().size(), q = b.front().size();
            std::vector<std::vector<double>> result(n, std::vector<double>(q, 0));
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < q; j++)
                {
                    double &res = result[i][j];
                    for (int k = 0; k < m; k++)
                        res += a[i][k] * b[k][j];
                }
            }
            return result;
        };

        int k = n;
        double sqrt5 = sqrt(5);
        std::vector<std::vector<double>> P{{(1 + sqrt5) / 2, (1 - sqrt5) / 2}, {1, 1}};
        std::vector<std::vector<double>> A{{pow((1 + sqrt5) / 2, k), 0}, {0, pow((1 - sqrt5) / 2, k)}};
        std::vector<std::vector<double>> P_{{1 / sqrt5, (-1 + sqrt5) / 2 / sqrt5}, {-1 / sqrt5, (1 + sqrt5) / 2 / sqrt5}};
        std::vector<std::vector<double>> Result = mul(mul(P, A), P_);

        return (int)Result[0][0];
    }
};

结论

通过相似对角矩阵加速矩阵的幂,我们在处理斐波那契数列这一经典问题时展示了这一方法的实际应用。这种技术对于解决其他矩阵幂的计算问题同样具有广泛的应用,尤其是在处理大型矩阵时。希望本文能为理解矩阵的幂和相似对角矩阵的概念提供一些启示。

相关推荐
芒克芒克3 小时前
LeetCode 面试经典 150 题:多数元素(摩尔投票法详解 + 多解法对比)
算法·leetcode·面试
ゞ 正在缓冲99%…4 小时前
leetcode438.找到字符串中所有字母异位词
leetcode·滑动窗口
pzx_0014 小时前
【LeetCode】392.判断子序列
算法·leetcode·职场和发展
passxgx7 小时前
10.3 马尔可夫矩阵、人口和经济
矩阵
彬彬醤7 小时前
TikTok矩阵有哪些运营支撑方案?
大数据·网络·网络协议·tcp/ip·矩阵·udp·产品运营
iナナ8 小时前
Java优选算法——二分查找
数据结构·算法·leetcode
Adorable老犀牛10 小时前
阿里云-基于通义灵码实现高效 AI 编码 | 8 | 上手实操:LeetCode学习宝典,通义灵码赋能算法高效突破
学习·算法·leetcode
林木辛11 小时前
LeetCode 热题 160.相交链表(双指针)
算法·leetcode·链表
崎岖Qiu11 小时前
leetcode380:RandomizedSet - O(1)时间插入删除和获取随机元素(数组+哈希表的巧妙结合)
java·数据结构·算法·leetcode·力扣·散列表
好易学·数据结构12 小时前
可视化图解算法60: 矩阵最长递增路径
数据结构·算法·leetcode·力扣·递归·回溯算法·牛客