12-07 周四 Pytorch 使用Visdom 进行可视化

简介

在完成了龙良曲的Pytroch视频课程之后,楼主对于pytroch有了进一步的理解,比如,比之前更加深刻的了解了BP神经网络的反向传播算法,梯度、损失、优化器这些名词更加熟悉。这个博客简要介绍一下在使用Pytorch进行数据可视化的一些内容。

安装

bash 复制代码
pip install visdom

启动服务

bash 复制代码
python -m visdom.server

使用

基本上是按照先生成对象,然后追加内容的方式。

python 复制代码
import visdom

vis = visdom.Visdom()
vis.line([0.], [0.], win='jax train-loss', name="train loss", opts=dict(title='jax train loss'))
vis.line([0.0], [0.], win='jax time-consumed', name="time", opts=dict(title='jax time'))
vis.text(f"jax 进行代理模型训练", win="jax log", opts={"title": "jax log"})



# jit_train_step = train_step
start_time = time.time()
s1=start_time
for epoch in range(iterations):
	vis.text(f"{epoch+1}, Loss: {loss}, Time: {duration}", win="jax log", append=True)
	vis.line([loss.item()*1000], [epoch+1], win="jax train-loss", update='append', name="train loss", opts={"title": "jax train loss"})
vis.line([duration], [epoch+1], win='jax time-consumed', update='append', name="time", opts={"title": 'jax time'})

下图中,则是同一个图中同时绘制两个曲线

下图演示绘制曲线

呈现效果

相关推荐
知识靠谱1 分钟前
【深度学习】Transformer入门:通俗易懂的介绍
人工智能·深度学习·transformer
bst@微胖子1 小时前
Python高级语法之selenium
开发语言·python·selenium
Luis Li 的猫猫2 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
查理零世2 小时前
【蓝桥杯集训·每日一题2025】 AcWing 6118. 蛋糕游戏 python
python·算法·蓝桥杯
魔尔助理顾问3 小时前
一个简洁高效的Flask用户管理示例
后端·python·flask
java1234_小锋3 小时前
一周学会Flask3 Python Web开发-request请求对象与url传参
开发语言·python·flask·flask3
木觞清4 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
诚信爱国敬业友善6 小时前
常见排序方法的总结归类
开发语言·python·算法
wyg_0311137 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
架构默片7 小时前
【JAVA工程师从0开始学AI】,第五步:Python类的“七十二变“——当Java的铠甲遇见Python的液态金属
java·开发语言·python