目录
[1 数据集制作与加载](#1 数据集制作与加载)
[1.1 导入数据](#1.1 导入数据)
[1.2 数据加载,训练数据、测试数据分组,数据分batch](#1.2 数据加载,训练数据、测试数据分组,数据分batch)
[2 Transformer分类模型和超参数选取](#2 Transformer分类模型和超参数选取)
[2.1 定义Transformer分类模型,采用Transformer架构中的编码器:](#2.1 定义Transformer分类模型,采用Transformer架构中的编码器:)
[2.2 定义模型参数](#2.2 定义模型参数)
[2.3 模型结构](#2.3 模型结构)
[3 Transformer模型训练与评估](#3 Transformer模型训练与评估)
[3.1 模型训练](#3.1 模型训练)
[3.2 模型评估](#3.2 模型评估)
往期精彩内容:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理
Python轴承故障诊断 (四)基于EMD-CNN的故障分类
Python轴承故障诊断 (五)基于EMD-LSTM的故障分类
前言
本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现Transformer模型对故障数据的分类,并介绍Transformer模型的超参数。凯斯西储大学轴承数据的详细介绍可以参考下文:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理
1 数据集制作与加载
1.1 导入数据
参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:
第一步,导入十分类数据
python
import numpy as np
import pandas as pd
from scipy.io import loadmat
file_names = ['0_0.mat','7_1.mat','7_2.mat','7_3.mat','14_1.mat','14_2.mat','14_3.mat','21_1.mat','21_2.mat','21_3.mat']
for file in file_names:
# 读取MAT文件
data = loadmat(f'matfiles\\{file}')
print(list(data.keys()))
第二步,读取MAT文件驱动端数据
python
# 采用驱动端数据
data_columns = ['X097_DE_time', 'X105_DE_time', 'X118_DE_time', 'X130_DE_time', 'X169_DE_time',
'X185_DE_time','X197_DE_time','X209_DE_time','X222_DE_time','X234_DE_time']
columns_name = ['de_normal','de_7_inner','de_7_ball','de_7_outer','de_14_inner','de_14_ball','de_14_outer','de_21_inner','de_21_ball','de_21_outer']
data_12k_10c = pd.DataFrame()
for index in range(10):
# 读取MAT文件
data = loadmat(f'matfiles\\{file_names[index]}')
dataList = data[data_columns[index]].reshape(-1)
data_12k_10c[columns_name[index]] = dataList[:119808] # 121048 min: 121265
print(data_12k_10c.shape)
data_12k_10c
第三步,制作数据集
train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据
第四步,制作训练集和标签
python
# 制作数据集和标签
import torch
# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。
def make_data_labels(dataframe):
'''
参数 dataframe: 数据框
返回 x_data: 数据集 torch.tensor
y_label: 对应标签值 torch.tensor
'''
# 信号值
x_data = dataframe.iloc[:,0:-1]
# 标签值
y_label = dataframe.iloc[:,-1]
x_data = torch.tensor(x_data.values).float()
y_label = torch.tensor(y_label.values.astype('int64')) # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签
return x_data, y_label
# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')
# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')
1.2 数据加载,训练数据、测试数据分组,数据分batch
python
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100) # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练
# 加载数据集
def dataloader(batch_size, workers=2):
# 训练集
train_xdata = load('trainX_1024_10c')
train_ylabel = load('trainY_1024_10c')
# 验证集
val_xdata = load('valX_1024_10c')
val_ylabel = load('valY_1024_10c')
# 测试集
test_xdata = load('testX_1024_10c')
test_ylabel = load('testY_1024_10c')
# 加载数据
train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),
batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),
batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),
batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
return train_loader, val_loader, test_loader
batch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)
2 Transformer分类模型和超参数选取
2.1 定义Transformer分类模型,采用Transformer架构中的编码器:
注意:输入数据进行了堆叠 ,把一个1*1024 的序列 进行划分堆叠成形状为 32 * 32, 就使输入序列的长度降下来了
2.2 定义模型参数
python
# 模型参数
input_dim = 32 # 输入维度
hidden_dim = 512 # 注意力维度
output_dim = 10 # 输出维度
num_layers = 4 # 编码器层数
num_heads = 8 # 多头注意力头数
batch_size = 32
# 模型
model = TransformerModel(input_dim, output_dim, hidden_dim, num_layers, num_heads, batch_size)
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum') # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate) # 优化器
2.3 模型结构
3 Transformer模型训练与评估
3.1 模型训练
训练结果
100个epoch,准确率将近90%,Transformer模型分类效果良好,参数过拟合了,适当调整模型参数,降低模型复杂度,还可以进一步提高分类准确率。
注意调整参数:
-
可以适当增加 Transforme编码器层数 和隐藏层的维度,微调学习率;
-
调整多头注意力的头数,增加更多的 epoch (注意防止过拟合)
-
可以改变一维信号堆叠的形状(设置合适的长度和维度)
3.2 模型评估
python
# 模型 测试集 验证
import torch.nn.functional as F
# 加载模型
model =torch.load('best_model_transformer.pt')
# model = torch.load('best_model_cnn2d.pt', map_location=torch.device('cpu'))
# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():
correct_test = 0
test_loss = 0
for test_data, test_label in test_loader:
test_data, test_label = test_data.to(device), test_label.to(device)
test_output = model(test_data)
probabilities = F.softmax(test_output, dim=1)
predicted_labels = torch.argmax(probabilities, dim=1)
correct_test += (predicted_labels == test_label).sum().item()
loss = loss_function(test_output, test_label)
test_loss += loss.item()
test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f} Test Loss: {test_loss:10.8f}')
Test Accuracy: 0.9570 Test Loss: 0.12100271