Pytorch-Transformer轴承故障一维信号分类(三)

目录

前言

[1 数据集制作与加载](#1 数据集制作与加载)

[1.1 导入数据](#1.1 导入数据)

第一步,导入十分类数据

第二步,读取MAT文件驱动端数据

第三步,制作数据集

第四步,制作训练集和标签

[1.2 数据加载,训练数据、测试数据分组,数据分batch](#1.2 数据加载,训练数据、测试数据分组,数据分batch)

[2 Transformer分类模型和超参数选取](#2 Transformer分类模型和超参数选取)

[2.1 定义Transformer分类模型,采用Transformer架构中的编码器:](#2.1 定义Transformer分类模型,采用Transformer架构中的编码器:)

[2.2 定义模型参数](#2.2 定义模型参数)

[2.3 模型结构](#2.3 模型结构)

[3 Transformer模型训练与评估](#3 Transformer模型训练与评估)

[3.1 模型训练](#3.1 模型训练)

[3.2 模型评估](#3.2 模型评估)


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT

Python轴承故障诊断 (三)经验模态分解EMD

Python轴承故障诊断 (四)基于EMD-CNN的故障分类

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类

Pytorch-LSTM轴承故障一维信号分类(一)

Pytorch-CNN轴承故障一维信号分类(二)

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现Transformer模型对故障数据的分类,并介绍Transformer模型的超参数。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

1 数据集制作与加载

1.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

第一步,导入十分类数据

python 复制代码
import numpy as np
import pandas as pd
from scipy.io import loadmat

file_names = ['0_0.mat','7_1.mat','7_2.mat','7_3.mat','14_1.mat','14_2.mat','14_3.mat','21_1.mat','21_2.mat','21_3.mat']

for file in file_names:
    # 读取MAT文件
    data = loadmat(f'matfiles\\{file}')
    print(list(data.keys()))

第二步,读取MAT文件驱动端数据

python 复制代码
# 采用驱动端数据
data_columns = ['X097_DE_time', 'X105_DE_time', 'X118_DE_time', 'X130_DE_time', 'X169_DE_time',
                'X185_DE_time','X197_DE_time','X209_DE_time','X222_DE_time','X234_DE_time']
columns_name = ['de_normal','de_7_inner','de_7_ball','de_7_outer','de_14_inner','de_14_ball','de_14_outer','de_21_inner','de_21_ball','de_21_outer']
data_12k_10c = pd.DataFrame()
for index in range(10):
    # 读取MAT文件
    data = loadmat(f'matfiles\\{file_names[index]}')
    dataList = data[data_columns[index]].reshape(-1)
    data_12k_10c[columns_name[index]] = dataList[:119808]  # 121048  min: 121265
print(data_12k_10c.shape)
data_12k_10c

第三步,制作数据集

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

第四步,制作训练集和标签

python 复制代码
# 制作数据集和标签
import torch

# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。

def make_data_labels(dataframe):
    '''
        参数 dataframe: 数据框
        返回 x_data: 数据集     torch.tensor
            y_label: 对应标签值  torch.tensor
    '''
    # 信号值
    x_data = dataframe.iloc[:,0:-1]
    # 标签值
    y_label = dataframe.iloc[:,-1]
    x_data = torch.tensor(x_data.values).float()
    y_label = torch.tensor(y_label.values.astype('int64')) # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签
    return x_data, y_label

# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')

# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')

1.2 数据加载,训练数据、测试数据分组,数据分batch

python 复制代码
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练

# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_xdata = load('trainX_1024_10c')
    train_ylabel = load('trainY_1024_10c')
    # 验证集
    val_xdata = load('valX_1024_10c')
    val_ylabel = load('valY_1024_10c')
    # 测试集
    test_xdata = load('testX_1024_10c')
    test_ylabel = load('testY_1024_10c')

    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),
                                   batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),
                                 batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),
                                  batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    return train_loader, val_loader, test_loader

batch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)

2 Transformer分类模型和超参数选取

2.1 定义Transformer分类模型,采用Transformer架构中的编码器:

注意:输入数据进行了堆叠 ,把一个1*1024 的序列 进行划分堆叠成形状为 32 * 32, 就使输入序列的长度降下来了

2.2 定义模型参数

python 复制代码
# 模型参数
input_dim = 32 # 输入维度
hidden_dim = 512  # 注意力维度
output_dim  = 10  # 输出维度
num_layers = 4   # 编码器层数
num_heads = 8    # 多头注意力头数
batch_size = 32
# 模型
model = TransformerModel(input_dim, output_dim, hidden_dim, num_layers, num_heads, batch_size)  
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)  # 优化器

2.3 模型结构

3 Transformer模型训练与评估

3.1 模型训练

训练结果

100个epoch,准确率将近90%,Transformer模型分类效果良好,参数过拟合了,适当调整模型参数,降低模型复杂度,还可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加 Transforme编码器层数 和隐藏层的维度,微调学习率;

  • 调整多头注意力的头数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.2 模型评估

python 复制代码
# 模型 测试集 验证  
import torch.nn.functional as F

# 加载模型
model =torch.load('best_model_transformer.pt')
# model = torch.load('best_model_cnn2d.pt', map_location=torch.device('cpu'))

# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():
    correct_test = 0
    test_loss = 0
    for test_data, test_label in test_loader:
        test_data, test_label = test_data.to(device), test_label.to(device)
        test_output = model(test_data)
        probabilities = F.softmax(test_output, dim=1)
        predicted_labels = torch.argmax(probabilities, dim=1)
        correct_test += (predicted_labels == test_label).sum().item()
        loss = loss_function(test_output, test_label)
        test_loss += loss.item()

test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')

Test Accuracy: 0.9570  Test Loss: 0.12100271
相关推荐
丶21362 小时前
【CUDA】【PyTorch】安装 PyTorch 与 CUDA 11.7 的详细步骤
人工智能·pytorch·python
羊小猪~~5 小时前
深度学习项目----用LSTM模型预测股价(包含LSTM网络简介,代码数据均可下载)
pytorch·python·rnn·深度学习·机器学习·数据分析·lstm
醒了就刷牙5 小时前
58 深层循环神经网络_by《李沐:动手学深度学习v2》pytorch版
pytorch·rnn·深度学习
weixin_466485116 小时前
Yolov8分类检测记录
yolo·分类·数据挖掘
Hoper.J14 小时前
PyTorch 模型保存与加载的三种常用方式
人工智能·pytorch·python
model200514 小时前
android + tflite 分类APP开发-2
android·分类·tflite
没有余地 EliasJie14 小时前
Windows Ubuntu下搭建深度学习Pytorch训练框架与转换环境TensorRT
pytorch·windows·深度学习·ubuntu·pycharm·conda·tensorflow
被制作时长两年半的个人练习生16 小时前
【pytorch】权重为0的情况
人工智能·pytorch·深度学习
GarryLau19 小时前
使用pytorch进行迁移学习的两个步骤
pytorch·迁移学习·torchvision
wei_shuo21 小时前
偏标记学习+图像分类(论文复现)
学习·分类·数据挖掘