Guardrails for Amazon Bedrock 基于具体使用案例与负责任 AI 政策实现定制式安全保障(预览版)

作为负责任的人工智能(AI)战略的一部分,您现在可以使用 Guardrails for Amazon Bedrock(预览版),实施专为您的用例和负责任的人工智能政策而定制的保障措施,以此促进用户与生成式人工智能应用程序之间的安全交互。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点这里让它成为你的技术宝库!

亚马逊云科技致力于以负责任、以人为本的方式开发生成式人工智能,并注重教育和科学,帮助开发人员在整个人工智能生命周期中整合负责任的人工智能。借助 Guardrails for Amazon Bedrock,您可以持续实施保障措施,在符合公司政策和原则的情况下,为用户提供相关且安全的体验。Guardrails 可帮助您定义拒绝主题和内容过滤器,以便从用户与应用程序之间的交互过程中删除不良和有害内容。除基础模型(FM)中内置的各种保护措施外,这又提供了额外控制。

您可以为 Amazon Bedrock 中的所有大型语言模型(LLM)装上护栏,包括自定义模型和 Agents for Amazon Bedrock。这可以提高在应用程序间部署首选项的一致性,进而令您安全地开展创新,同时根据您的要求密切管理用户体验。通过对安全和隐私控制加以标准化处理,Guardrails for Amazon Bedrock 可有助于您构建符合负责任人工智能目标的生成式人工智能应用程序。

以下,将简要介绍 Guardrails for Amazon Bedrock 所提供的关键控制。

关键控制

使用 Guardrails for Amazon Bedrock,您可以定义以下政策集,为您的应用程序保驾护航。

拒绝主题 - 您可以使用简短的自然语言描述,定义一组在应用程序语境中不受欢迎的主题。例如,作为银行的开发人员,您可能希望为网上银行应用程序设置一个助手,避免提供投资建议。

我指定了一个名为"投资建议"的拒绝主题,并提供了一段自然语言描述,例如"投资建议是指以产生回报或实现特定财务目标为目的的有关资金或资产管理或分配的询问、指导或建议"。

内容过滤器 - 您可以配置用于过滤仇恨、侮辱、性和暴力等各类有害内容的阈值。虽然许多基础模型已经内置了保护措施,以防止产生不良和有害反应,但 Guardrails 为您提供了额外的控制功能,可根据您的用例和负责任的人工智能政策,将此类互动过滤至预期程度。过滤器强度越高,过滤就越严格。

PII 编辑(计划中)- 您将可以选择一组可在基础模型生成的响应中进行编辑的个人身份信息(PII),例如姓名、电子邮件地址和电话号码,或者在用户输入含有 PII 的内容时加以阻止。

Guardrails for Amazon Bedrock 与 Amazon CloudWatch 相集成,因此您可以监控和分析违反 Guardrails 中所定义政策的用户输入和基础模型响应。

加入预览

今日推出的 Guardrails for Amazon Bedrock 是有限预览版。如果您想要获取 Guardrails for Amazon Bedrock,请通过您平常的亚马逊云科技支持团队联系人联系我们。

在预览期间,Guardrails 可应用于 Amazon Bedrock 中的所有大型语言模型(LLM),包括 Amazon Titan Text、Anthropic Claude、Meta Llama 2、AI21 Jurassic、以及 Cohere Command。您也可以将 Guardrails 用于自定义模型以及 Agents for Amazon Bedrock。

要了解更多信息,请访问 Guardrails for Amazon Bedrock 网页。

文章来源:
dev.amazoncloud.cn/column/arti...

相关推荐
幻云20101 分钟前
Next.js之道:从入门到精通
人工智能·python
予枫的编程笔记6 分钟前
【Java集合】深入浅出 Java HashMap:从链表到红黑树的“进化”之路
java·开发语言·数据结构·人工智能·链表·哈希算法
llddycidy7 分钟前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习
larance8 分钟前
机器学习的一些基本知识
人工智能·机器学习
l1t12 分钟前
利用DeepSeek辅助拉取GitHub存储库目录跳过特定文件方法
人工智能·github·deepseek
123445219 分钟前
Agent入门实战-一个题目生成Agent
人工智能·后端
IT_陈寒22 分钟前
Java性能调优实战:5个被低估却提升30%效率的JVM参数
前端·人工智能·后端
taihexuelang24 分钟前
大模型部署
人工智能·docker·容器
轻竹办公PPT25 分钟前
2025实测!AI生成PPT工具全总结
人工智能·python·powerpoint
做科研的周师兄26 分钟前
【MATLAB 实战】栅格数据 K-Means 聚类(分块处理版)—— 解决大数据内存溢出、运行卡顿问题
人工智能·算法·机器学习·matlab·kmeans·聚类