使用pytorch查看中间层特征矩阵以及卷积核参数

这篇是我对哔哩哔哩up主 @霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享

1和4是之前讲过的alexnet和resnet模型

2是分析中间层特征矩阵的脚本

3是查看卷积核参数的脚本

1设置预处理方法 和图像训练的时候用的预处理方法保持一致

2实例化模型

3载入之前的模型参数

4载入一张图片

5对图片进行预处理

6增加一个batch维度

7输入模型进行正向传播

如果print model可以看到模型信息:

模型虽然用的是alexnet,但是关于正向传播的代码做了一些修改:

因为我们目的是得到中间层的特征矩阵。

希望能遍历第一、第二、第三个卷积层并得到特征矩阵。

首先通过一个循环遍历我们features的层结构,通过named_children这个方法遍历features下面的所有层结构。

对于每一个层结构都用x=module(x)以实现正向传播的过程

回到analyze_feature_map.py

squeeze一下因为我们输入只有一个图片所以我们不需要N这个维度

然后transpose一下通道顺序

im[:,:,i]通过切片的方法获取每一个channel的特征矩阵

cmap='gray'表示用灰度图的方法来表示

如果不加这个,那默认就会用蓝色和绿色来替代灰度图的黑色和白色来展示

这就是我们第一个卷积层输出的特征矩阵的前12个通道的特征图

可以和原图对比一下:

卷积层2所输出的特征矩阵:

可以看到有的通道是纯黑的,也就是说有的卷积核是没有起到任何作用的,就是没有学到东西

卷积层越往后抽象程度越高

如果不加cmap=gray:

接下来我们看一下如何查看网络卷积层的卷积核的信息

我们其实可以直接通过torch.load载入模型参数,返回的是一个dict字典形式,key是层名称value就是该层的训练信息。

state_dict() 来获取模型中所有可训练参数的字典keys()获取所有具有参数的层结构的名称

只有卷积层有训练参数,relu和maxpool2d是没有训练参数的

卷积核的个数对应输出矩阵的深度

卷积核的通道数对应输入矩阵的深度

这一句是为了排除编程结构的一些不需要的信息

另外,如果B站视频分辨率不太好,感觉跟全屏时的清晰度差很多,但是不全屏的话就截图都截不清楚,那么就拖拽网页页面左右划拉一下试试,就会变清晰

相关推荐
luoganttcc2 小时前
PyTorch 中nn.Embedding
pytorch·深度学习·embedding
九章云极AladdinEdu2 小时前
绿色算力技术栈:AI集群功耗建模与动态调频系统
人工智能·pytorch·深度学习·unity·游戏引擎·transformer·gpu算力
盼小辉丶2 小时前
Transformer实战(17)——微调Transformer语言模型进行多标签文本分类
深度学习·分类·transformer
Dfreedom.3 小时前
在Windows上搭建GPU版本PyTorch运行环境的详细步骤
c++·人工智能·pytorch·python·深度学习
confiself3 小时前
AndroidWorld+mobileRL
人工智能·深度学习
程序员奈斯4 小时前
Python深度学习:NumPy数组库
python·深度学习·numpy
CoovallyAIHub4 小时前
CostFilter-AD:用“匹配代价过滤”刷新工业质检异常检测新高度! (附论文和源码)
深度学习·算法·计算机视觉
CoovallyAIHub4 小时前
CVPR 2025 | 频率动态卷积(FDConv):以固定参数预算实现频率域自适应,显著提升视觉任务性能
深度学习·算法·计算机视觉
胡乱编胡乱赢5 小时前
在pycharm终端安装torch
ide·深度学习·pycharm·安装torch
深耕AI5 小时前
PyTorch自定义模型结构详解:从基础到高级实践
人工智能·pytorch·python