使用pytorch查看中间层特征矩阵以及卷积核参数

这篇是我对哔哩哔哩up主 @霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享

1和4是之前讲过的alexnet和resnet模型

2是分析中间层特征矩阵的脚本

3是查看卷积核参数的脚本

1设置预处理方法 和图像训练的时候用的预处理方法保持一致

2实例化模型

3载入之前的模型参数

4载入一张图片

5对图片进行预处理

6增加一个batch维度

7输入模型进行正向传播

如果print model可以看到模型信息:

模型虽然用的是alexnet,但是关于正向传播的代码做了一些修改:

因为我们目的是得到中间层的特征矩阵。

希望能遍历第一、第二、第三个卷积层并得到特征矩阵。

首先通过一个循环遍历我们features的层结构,通过named_children这个方法遍历features下面的所有层结构。

对于每一个层结构都用x=module(x)以实现正向传播的过程

回到analyze_feature_map.py

squeeze一下因为我们输入只有一个图片所以我们不需要N这个维度

然后transpose一下通道顺序

im[:,:,i]通过切片的方法获取每一个channel的特征矩阵

cmap='gray'表示用灰度图的方法来表示

如果不加这个,那默认就会用蓝色和绿色来替代灰度图的黑色和白色来展示

这就是我们第一个卷积层输出的特征矩阵的前12个通道的特征图

可以和原图对比一下:

卷积层2所输出的特征矩阵:

可以看到有的通道是纯黑的,也就是说有的卷积核是没有起到任何作用的,就是没有学到东西

卷积层越往后抽象程度越高

如果不加cmap=gray:

接下来我们看一下如何查看网络卷积层的卷积核的信息

我们其实可以直接通过torch.load载入模型参数,返回的是一个dict字典形式,key是层名称value就是该层的训练信息。

state_dict() 来获取模型中所有可训练参数的字典keys()获取所有具有参数的层结构的名称

只有卷积层有训练参数,relu和maxpool2d是没有训练参数的

卷积核的个数对应输出矩阵的深度

卷积核的通道数对应输入矩阵的深度

这一句是为了排除编程结构的一些不需要的信息

另外,如果B站视频分辨率不太好,感觉跟全屏时的清晰度差很多,但是不全屏的话就截图都截不清楚,那么就拖拽网页页面左右划拉一下试试,就会变清晰

相关推荐
算法_小学生2 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习
云手机掌柜3 小时前
Tumblr长文运营:亚矩阵云手机助力多账号轮询与关键词布局系统
大数据·服务器·tcp/ip·矩阵·流量运营·虚幻·云手机
tt5555555555553 小时前
字符串与算法题详解:最长回文子串、IP 地址转换、字符串排序、蛇形矩阵与字符串加密
c++·算法·矩阵
努力还债的学术吗喽4 小时前
【速通】深度学习模型调试系统化方法论:从问题定位到性能优化
人工智能·深度学习·学习·调试·模型·方法论
伊织code4 小时前
PyTorch API 6
pytorch·api·ddp
大千AI助手5 小时前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex
学行库小秘6 小时前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru
范男7 小时前
基于Pytochvideo训练自己的的视频分类模型
人工智能·pytorch·python·深度学习·计算机视觉·3d·视频
聚客AI8 小时前
🧠深度解析模型压缩革命:减枝、量化、知识蒸馏
人工智能·深度学习·llm
SHIPKING3938 小时前
【机器学习&深度学习】Ollama、vLLM、LMDeploy对比:选择适合你的 LLM 推理框架
人工智能·深度学习·机器学习