使用pytorch查看中间层特征矩阵以及卷积核参数

这篇是我对哔哩哔哩up主 @霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享

1和4是之前讲过的alexnet和resnet模型

2是分析中间层特征矩阵的脚本

3是查看卷积核参数的脚本

1设置预处理方法 和图像训练的时候用的预处理方法保持一致

2实例化模型

3载入之前的模型参数

4载入一张图片

5对图片进行预处理

6增加一个batch维度

7输入模型进行正向传播

如果print model可以看到模型信息:

模型虽然用的是alexnet,但是关于正向传播的代码做了一些修改:

因为我们目的是得到中间层的特征矩阵。

希望能遍历第一、第二、第三个卷积层并得到特征矩阵。

首先通过一个循环遍历我们features的层结构,通过named_children这个方法遍历features下面的所有层结构。

对于每一个层结构都用x=module(x)以实现正向传播的过程

回到analyze_feature_map.py

squeeze一下因为我们输入只有一个图片所以我们不需要N这个维度

然后transpose一下通道顺序

im[:,:,i]通过切片的方法获取每一个channel的特征矩阵

cmap='gray'表示用灰度图的方法来表示

如果不加这个,那默认就会用蓝色和绿色来替代灰度图的黑色和白色来展示

这就是我们第一个卷积层输出的特征矩阵的前12个通道的特征图

可以和原图对比一下:

卷积层2所输出的特征矩阵:

可以看到有的通道是纯黑的,也就是说有的卷积核是没有起到任何作用的,就是没有学到东西

卷积层越往后抽象程度越高

如果不加cmap=gray:

接下来我们看一下如何查看网络卷积层的卷积核的信息

我们其实可以直接通过torch.load载入模型参数,返回的是一个dict字典形式,key是层名称value就是该层的训练信息。

state_dict() 来获取模型中所有可训练参数的字典keys()获取所有具有参数的层结构的名称

只有卷积层有训练参数,relu和maxpool2d是没有训练参数的

卷积核的个数对应输出矩阵的深度

卷积核的通道数对应输入矩阵的深度

这一句是为了排除编程结构的一些不需要的信息

另外,如果B站视频分辨率不太好,感觉跟全屏时的清晰度差很多,但是不全屏的话就截图都截不清楚,那么就拖拽网页页面左右划拉一下试试,就会变清晰

相关推荐
AIM0861 小时前
稀疏子空间聚类 SSC(Sparse Subspace Clustering)
人工智能·深度学习·机器学习·数学建模·数据挖掘·聚类
孤独且没人爱的纸鹤2 小时前
【机器学习】无监督学习麾下 K-means 聚类如何智能划分,解锁隐藏结构,为市场细分、图像分割、基因聚类精准导航
人工智能·深度学习·机器学习·支持向量机·ai·kmeans·聚类
笔写落去2 小时前
统计学习方法(第二版) 第六章 逻辑斯特回归
人工智能·深度学习·机器学习
Y1nhl3 小时前
搜广推校招面经四
pytorch·python·搜索引擎·推荐算法
snow每天都要好好学习3 小时前
From Orthogonal Time Frequency Space to Affine Frequency Division Multiplexing
深度学习
cufewxy20183 小时前
深度学习中的卷积和反卷积(二)——反卷积的介绍
深度学习·反卷积
大模型铲屎官3 小时前
深入NLP核心技术:文本张量表示与词嵌入全面解析
人工智能·pytorch·自然语言处理·大模型·nlp·词嵌入·文本张量表示
来瓶霸王防脱发10 小时前
【C#深度学习之路】如何使用C#实现Yolo5/8/11全尺寸模型的训练和推理
深度学习·yolo·机器学习·c#
music&movie11 小时前
代码填空任务---自编码器模型
python·深度学习·机器学习
pursuit_csdn13 小时前
力扣 74. 搜索二维矩阵
算法·leetcode·矩阵