深度学习中的各类评价指标

深度学习中的各类评价指标

    • [1 Dice Loss](#1 Dice Loss)
    • [2 Precision(精度)](#2 Precision(精度))
    • [3 Recall(召回率)](#3 Recall(召回率))
    • [4 F-Score](#4 F-Score)
    • [5 mAP](#5 mAP)

1 Dice Loss

Dice Loss,也叫Soft Dice Coefficient,是一种用于图像分割任务的损失函数。它基于目标分割图像与模型输出结果之间的重叠区域的比例计算出分数。它通过最小化预测结果和真实结果之间的差异来优化模型。与交叉熵损失函数相比,它更适合于处理难分割的目标

Dice Loss的计算公式是:Dice Loss = 1 - 2 * |X ∩ Y| / (|X| + |Y|)。其中,X和Y分别表示预测结果和真实结果,|X ∩ Y|表示它们之间的交集,|X|和|Y|分别表示它们各自的区域。(仅供参考)

2 Precision(精度)

Precision表示预测为正 且 真实为正占预测为正的比例。

计算公式为Precision = TP / (TP + FP)或,其中TP表示真正例(True Positives),FP表示假正例(False Positives)。

3 Recall(召回率)

Recall表示预测为正且真实为正占所有真实为正的比例。

计算公式为Precision = TP / (TP + FN),其中TP表示真正例(True Positives),FN表示假负例(False Negtives)。由于Recall指标反映的是正例的准确率,所以越高的Recall指标表明模型对正例的预测越准确

4 F-Score

F分数是统计学中用来衡量二分类模型精确度的一种指标,它同时兼顾了分类模型的精确率和召回率。F分数可以看作是模型精确率和召回率的一种加权平均,其最大值是1,最小值是0。在自然语言处理领域,F分数也被广泛应用,比如命名实体识别、分词等,用来衡量算法或系统的性能。

F分数计算公式是:F1 = (2 * P * R) / (P + R)。其中,P表示精确率,R表示召回率。(仅供参考)

5 mAP

mAP(mean Average Precision)在机器学习中的目标检测领域,是十分重要的衡量指标,用于衡量目标检测算法的性能。一般而言,全类平均正确率(mAP,又称全类平均精度)是将所有类别检测的平均正确率(AP)进行综合加权平均而得到的。mAP除此之外,用于衡量目标检测算法性能的常用指标还有:准确率 (Accuracy),精确率(Precision),召回率(Recall),平均正确率(AP),交并比(IOU)等等。
计算方法参考链接

相关推荐
阿坡RPA12 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499312 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心12 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI14 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c15 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20515 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清15 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh16 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员16 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物16 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技