深度学习中的各类评价指标

深度学习中的各类评价指标

    • [1 Dice Loss](#1 Dice Loss)
    • [2 Precision(精度)](#2 Precision(精度))
    • [3 Recall(召回率)](#3 Recall(召回率))
    • [4 F-Score](#4 F-Score)
    • [5 mAP](#5 mAP)

1 Dice Loss

Dice Loss,也叫Soft Dice Coefficient,是一种用于图像分割任务的损失函数。它基于目标分割图像与模型输出结果之间的重叠区域的比例计算出分数。它通过最小化预测结果和真实结果之间的差异来优化模型。与交叉熵损失函数相比,它更适合于处理难分割的目标

Dice Loss的计算公式是:Dice Loss = 1 - 2 * |X ∩ Y| / (|X| + |Y|)。其中,X和Y分别表示预测结果和真实结果,|X ∩ Y|表示它们之间的交集,|X|和|Y|分别表示它们各自的区域。(仅供参考)

2 Precision(精度)

Precision表示预测为正 且 真实为正占预测为正的比例。

计算公式为Precision = TP / (TP + FP)或,其中TP表示真正例(True Positives),FP表示假正例(False Positives)。

3 Recall(召回率)

Recall表示预测为正且真实为正占所有真实为正的比例。

计算公式为Precision = TP / (TP + FN),其中TP表示真正例(True Positives),FN表示假负例(False Negtives)。由于Recall指标反映的是正例的准确率,所以越高的Recall指标表明模型对正例的预测越准确

4 F-Score

F分数是统计学中用来衡量二分类模型精确度的一种指标,它同时兼顾了分类模型的精确率和召回率。F分数可以看作是模型精确率和召回率的一种加权平均,其最大值是1,最小值是0。在自然语言处理领域,F分数也被广泛应用,比如命名实体识别、分词等,用来衡量算法或系统的性能。

F分数计算公式是:F1 = (2 * P * R) / (P + R)。其中,P表示精确率,R表示召回率。(仅供参考)

5 mAP

mAP(mean Average Precision)在机器学习中的目标检测领域,是十分重要的衡量指标,用于衡量目标检测算法的性能。一般而言,全类平均正确率(mAP,又称全类平均精度)是将所有类别检测的平均正确率(AP)进行综合加权平均而得到的。mAP除此之外,用于衡量目标检测算法性能的常用指标还有:准确率 (Accuracy),精确率(Precision),召回率(Recall),平均正确率(AP),交并比(IOU)等等。
计算方法参考链接

相关推荐
腾飞开源2 分钟前
《AI智能体实战开发教程(从0到企业级项目落地)》全网上线|CSDN & B站同步首发
人工智能·ai智能体开发·全网首发·新课上线·粉丝专属优惠·全完结·企业级项目落地
Python极客之家6 分钟前
基于数据挖掘的在线游戏行为分析预测系统
人工智能·python·机器学习·数据挖掘·毕业设计·课程设计
说私域8 分钟前
基于开源AI智能名片与链动2+1模式的S2B2C商城小程序研究:构建“信息找人”式精准零售新范式
人工智能·小程序·开源
嘀咕博客27 分钟前
Kimi-Audio:Kimi开源的通用音频基础模型,支持语音识别、音频理解等多种任务
人工智能·音视频·语音识别·ai工具
Baihai_IDP29 分钟前
GPU 网络基础,Part 2(MoE 训练中的网络挑战;什么是前、后端网络;什么是东西向、南北向流量)
人工智能·llm·gpu
AI人工智能+33 分钟前
蒙古文识别技术:采用深度学习模型(CNN+RNN)处理蒙古文竖写特性,实现高精度识别
深度学习·ocr·蒙古文识别
Blacol38 分钟前
【MCP】Caldav个人日程助手
人工智能·mcp
l12345sy1 小时前
Day31_【 NLP _1.文本预处理 _(4)文本特征处理、文本数据增强】
人工智能·深度学习·自然语言处理
说私域1 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序在公益课裂变法中的应用与影响研究
人工智能·小程序
0xCode 小新1 小时前
【C语言内存函数完全指南】:memcpy、memmove、memset、memcmp 的用法、区别与模拟实现(含代码示例)
linux·c语言·人工智能·深度学习·机器学习·容器·内存函数