深度学习中的各类评价指标

深度学习中的各类评价指标

    • [1 Dice Loss](#1 Dice Loss)
    • [2 Precision(精度)](#2 Precision(精度))
    • [3 Recall(召回率)](#3 Recall(召回率))
    • [4 F-Score](#4 F-Score)
    • [5 mAP](#5 mAP)

1 Dice Loss

Dice Loss,也叫Soft Dice Coefficient,是一种用于图像分割任务的损失函数。它基于目标分割图像与模型输出结果之间的重叠区域的比例计算出分数。它通过最小化预测结果和真实结果之间的差异来优化模型。与交叉熵损失函数相比,它更适合于处理难分割的目标

Dice Loss的计算公式是:Dice Loss = 1 - 2 * |X ∩ Y| / (|X| + |Y|)。其中,X和Y分别表示预测结果和真实结果,|X ∩ Y|表示它们之间的交集,|X|和|Y|分别表示它们各自的区域。(仅供参考)

2 Precision(精度)

Precision表示预测为正 且 真实为正占预测为正的比例。

计算公式为Precision = TP / (TP + FP)或,其中TP表示真正例(True Positives),FP表示假正例(False Positives)。

3 Recall(召回率)

Recall表示预测为正且真实为正占所有真实为正的比例。

计算公式为Precision = TP / (TP + FN),其中TP表示真正例(True Positives),FN表示假负例(False Negtives)。由于Recall指标反映的是正例的准确率,所以越高的Recall指标表明模型对正例的预测越准确

4 F-Score

F分数是统计学中用来衡量二分类模型精确度的一种指标,它同时兼顾了分类模型的精确率和召回率。F分数可以看作是模型精确率和召回率的一种加权平均,其最大值是1,最小值是0。在自然语言处理领域,F分数也被广泛应用,比如命名实体识别、分词等,用来衡量算法或系统的性能。

F分数计算公式是:F1 = (2 * P * R) / (P + R)。其中,P表示精确率,R表示召回率。(仅供参考)

5 mAP

mAP(mean Average Precision)在机器学习中的目标检测领域,是十分重要的衡量指标,用于衡量目标检测算法的性能。一般而言,全类平均正确率(mAP,又称全类平均精度)是将所有类别检测的平均正确率(AP)进行综合加权平均而得到的。mAP除此之外,用于衡量目标检测算法性能的常用指标还有:准确率 (Accuracy),精确率(Precision),召回率(Recall),平均正确率(AP),交并比(IOU)等等。
计算方法参考链接

相关推荐
大连好光景6 分钟前
GCN模型的设计与训练(入门案例)
人工智能·深度学习·机器学习
jarreyer16 分钟前
【图像分割】记录1:unet, yolov8_seg
人工智能·笔记·计算机视觉
蓝桉80220 分钟前
opencv学习(图像梯度)
人工智能·opencv·学习
二向箔reverse37 分钟前
机器学习入门:线性回归详解与实战
人工智能·机器学习
真就死难1 小时前
Rerank 模型的其中两种路径:BERT 相似度与 CoT 推理
人工智能·机器学习·rag
无规则ai1 小时前
AI三巨头:机器学习、深度学习与人工智能解析
人工智能·深度学习·机器学习
简简单单做算法1 小时前
基于LSTM深度学习网络的视频类型分类算法matlab仿真
深度学习·matlab·分类·lstm·视频类型分类
不剪发的Tony老师1 小时前
字节跳动正式开源AI智能体开发平台Coze
人工智能·coze
love530love1 小时前
Windows 如何更改 ModelScope 的模型下载缓存位置?
运维·人工智能·windows·python·缓存·modelscope
一百天成为python专家4 小时前
数据可视化
开发语言·人工智能·python·机器学习·信息可视化·numpy