Pytorch中Group Normalization的具体实现

Group Normalization (GN) 是一种用于深度神经网络中的归一化方法,它将每个样本划分为小组,并在每个小组内进行标准化。与批归一化(Batch Normalization)不同,Group Normalization 不依赖于小批量数据,因此在训练和推断过程中的性能更加稳定

下面是 Group Normalization 的具体实现步骤:

  1. 输入:

    • 输入张量 x,形状为 (N, C, H, W, D),其中:
      • N 是批次大小(batch size),
      • C 是通道数(channels),
      • H、W、D 是空间维度。
  2. 小组划分:

    • 通道维度 C 分成 G 个小组(groups),其中 G 是 Group Normalization 中的一个超参数。
    • 每个小组包含 C/G 个通道。
  3. 计算均值和方差:

    • 对于每个小组 g,计算该小组内的均值 mu_g 和方差 sigma_g:其中 epsilon 是一个小的正数,用于稳定计算。

    • 标准化: 对于每个通道 i 和小组 g,使用计算得到的均值和方差对输入进行标准化:

    • 缩放和平移: 对于每个通道 i 和小组 g,引入可学习的缩放因子 gamma_i 和平移因子 beta_i,通过线性变换调整标准化后的值:其中 gamma_i 和 beta_i 是与通道相关的可学习参数。

    • **输出:**输出张量 y 是经过 Group Normalization 处理后的结果。

    • 在 PyTorch 中,可以通过 nn.GroupNorm 模块来实现 Group Normalization。以下是一个简化的例子:

      python 复制代码
      import torch
      import torch.nn as nn
      
      # 输入张量 x 的形状为 (N, C, H, W, D)
      x = torch.randn((32, 64, 128, 128, 128))
      
      # Group Normalization,其中 G=4
      gn = nn.GroupNorm(num_groups=4, num_channels=64)
      y = gn(x)

      在这个例子中,num_groups 指定了小组的数量,即 G,而 num_channels 指定了输入张量的通道数 C。 Group Normalization 的具体实现在 PyTorch 内部进行了高效计算。

相关推荐
九年义务漏网鲨鱼2 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间2 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享2 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾2 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码2 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5893 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien3 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松3 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_13 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫4 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain