Pytorch中Group Normalization的具体实现

Group Normalization (GN) 是一种用于深度神经网络中的归一化方法,它将每个样本划分为小组,并在每个小组内进行标准化。与批归一化(Batch Normalization)不同,Group Normalization 不依赖于小批量数据,因此在训练和推断过程中的性能更加稳定

下面是 Group Normalization 的具体实现步骤:

  1. 输入:

    • 输入张量 x,形状为 (N, C, H, W, D),其中:
      • N 是批次大小(batch size),
      • C 是通道数(channels),
      • H、W、D 是空间维度。
  2. 小组划分:

    • 通道维度 C 分成 G 个小组(groups),其中 G 是 Group Normalization 中的一个超参数。
    • 每个小组包含 C/G 个通道。
  3. 计算均值和方差:

    • 对于每个小组 g,计算该小组内的均值 mu_g 和方差 sigma_g:其中 epsilon 是一个小的正数,用于稳定计算。

    • 标准化: 对于每个通道 i 和小组 g,使用计算得到的均值和方差对输入进行标准化:

    • 缩放和平移: 对于每个通道 i 和小组 g,引入可学习的缩放因子 gamma_i 和平移因子 beta_i,通过线性变换调整标准化后的值:其中 gamma_i 和 beta_i 是与通道相关的可学习参数。

    • **输出:**输出张量 y 是经过 Group Normalization 处理后的结果。

    • 在 PyTorch 中,可以通过 nn.GroupNorm 模块来实现 Group Normalization。以下是一个简化的例子:

      python 复制代码
      import torch
      import torch.nn as nn
      
      # 输入张量 x 的形状为 (N, C, H, W, D)
      x = torch.randn((32, 64, 128, 128, 128))
      
      # Group Normalization,其中 G=4
      gn = nn.GroupNorm(num_groups=4, num_channels=64)
      y = gn(x)

      在这个例子中,num_groups 指定了小组的数量,即 G,而 num_channels 指定了输入张量的通道数 C。 Group Normalization 的具体实现在 PyTorch 内部进行了高效计算。

相关推荐
学习编程之路2 分钟前
ModelEngine vs Dify / Coze / Versatile 全面对比评测
人工智能·智能体
wuk99833 分钟前
MATLAB双树复小波变换(DTCWT)工具包详解
人工智能·计算机视觉·matlab
Petrichor_H_37 分钟前
DAY 39 图像数据与显存
人工智能·深度学习
vvoennvv1 小时前
【Python TensorFlow】 TCN-LSTM时间序列卷积长短期记忆神经网络时序预测算法(附代码)
python·神经网络·机器学习·tensorflow·lstm·tcn
yumgpkpm1 小时前
数据可视化AI、BI工具,开源适配 Cloudera CMP 7.3(或类 CDP 的 CMP 7.13 平台,如华为鲲鹏 ARM 版)值得推荐?
人工智能·hive·hadoop·信息可视化·kafka·开源·hbase
亚马逊云开发者1 小时前
通过Amazon Q CLI 集成DynamoDB MCP 实现游戏场景智能数据建模
人工智能
nix.gnehc1 小时前
PyTorch
人工智能·pytorch·python
J_Xiong01171 小时前
【VLNs篇】17:NaVid:基于视频的VLM规划视觉语言导航的下一步
人工智能·机器人
小殊小殊1 小时前
【论文笔记】视频RAG-Vgent:基于图结构的视频检索推理框架
论文阅读·人工智能·深度学习
IT_陈寒2 小时前
Vite 5.0实战:10个你可能不知道的性能优化技巧与插件生态深度解析
前端·人工智能·后端