2023第二届全国大学生数据分析大赛A完整原创论文(含摘要+问题分析+模型建立与求解+python代码)

大家好,从昨天肝到现在,终于完成了2023第二届全国大学生数据分析大赛A题某电商平台用户行为分析与挖掘的完整论文啦。

给大家看一下目录吧:

目录

摘 要: 10

一、问题重述 12

二.问题分析 13

2.1问题一 13

2.2问题二 13

2.3问题三 14

2.4问题四 14

2.5问题五 14

三、模型假设 14

四、符号说明 15

五、模型建立与求解 15

5.1问题一模型建立与求解 15

5.1.1 统计分析可视化 15

使用状态 16

实付金额 17

邮费 18

购买数量 19

订单ID 19

商家ID 20

用户ID 21

付款日期 22

省份 23

城市 24

5.2问题二模型建立与求解 25

5.2.1 特征确定 25

用户特征 25

商户特征 26

优惠券特征 26

5.2.2 用户特征计算 26

5.2.3 商户特征计算 27

5.2.4 优惠券特征计算 28

5.3问题三模型建立与求解 29

5.3.1 RFM模型建立 29

RFM模型介绍 29

RFM综合应用 30

RFM模型实施 30

5.3.2 额外特征计算 30

5.3.3 K-means聚类模型 31

K-means聚类模型引入 31

实际聚类 32

用户画像分析 33

5.4问题四模型建立与求解 35

5.4.1 预测准备工作 35

前置分析 35

数据预处理 35

是否发放代金券判别 36

数据汇总 38

5.4.2 基于SVM模型的预测 42

SVM分类模型的引入 42

SVM实际分类预测 44

5.4.2 基于随机森林模型的预测 47

随机森林分类模型的引入 47

随机森林实际分类预测 49

5.4.3 模型选取 52

5.5问题五模型建立与求解 53

投放策略设计 53

六、 模型评价 54

6.1 模型优点 54

6.2 模型缺点 54

七、模型推广 55

八、参考文献 55

附录: 56

给大家看部分python代码,只是我最初始的模板代码哦:

python 复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score

# 假设你已经加载了包含特征和目标变量的数据集
# data = pd.read_csv('your_dataset.csv')

# 分离特征和目标变量
X = data.drop('目标变量列名', axis=1)  # 替换'目标变量列名'为实际列名
y = data['目标变量列名']  # 同上

# 划分数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化随机森林分类器
model = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
model.fit(X_train, y_train)

# 进行预测
y_pred = model.predict(X_test)

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)

# 打印评估结果
print("Accuracy:", accuracy)
print("Classification Report:")
print(report)

OK,实际的完整代码和完整论文请点击下方我的个人卡片查看↓:

相关推荐
gorgeous(๑>؂<๑)30 分钟前
【中国科学院光电研究所-张建林组-AAAI26】追踪不稳定目标:基于外观引导的运动建模在无人机拍摄视频中实现稳健的多目标跟踪
人工智能·机器学习·计算机视觉·目标跟踪·无人机
oscar9991 小时前
机器学习实战:多项式回归建模——从模拟数据到模型评估
人工智能·机器学习·回归
汽车仪器仪表相关领域1 小时前
双组分精准快检,汽修年检利器:MEXA-324M汽车尾气测量仪项目实战全解
大数据·人工智能·功能测试·测试工具·算法·机器学习·压力测试
LDG_AGI2 小时前
【机器学习】深度学习推荐系统(三十):X 推荐算法Phoenix rerank机制
人工智能·分布式·深度学习·算法·机器学习·推荐算法
python机器学习ML2 小时前
机器学习——16种模型(基础+集成学习)+多角度SHAP高级可视化+Streamlit交互式应用+RFE特征选择+Optuna+完整项目
人工智能·python·机器学习·分类·数据挖掘·scikit-learn·集成学习
lisw052 小时前
计算神经科学:概念、历史、内容与发展战略!
人工智能·科技·数学建模
木头程序员3 小时前
工业视觉的“零缺陷”悖论:小样本异常检测的可行路径
人工智能·机器学习
YangYang9YangYan3 小时前
2026大专计算机专业学数据分析的价值分析
数据挖掘·数据分析
星河天欲瞩3 小时前
【深度学习Day1】环境配置(CUDA、PyTorch)
人工智能·pytorch·python·深度学习·学习·机器学习·conda
高洁013 小时前
知识图谱如何结合 RAG实现更精确的知识问答
人工智能·算法·机器学习·数据挖掘·知识图谱