解决pytorch训练的过程中内存一直增加的问题

来自:解决pytorch训练的过程中内存一直增加的问题 - 知乎

pytorch训练中内存一直增加的原因(部分)

  • 代码中存在累加loss,但每步的loss没加item()

    import torch
    import torch.nn as nn
    from collections import defaultdict

    if torch.cuda.is_available():
    device = 'cuda'
    else:
    device = 'cpu'

    model = nn.Linear(100, 400).to(device)
    criterion = nn.L1Loss(reduction='mean').to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    train_loss = defaultdict(float)
    eval_loss = defaultdict(float)

    for i in range(10000):
    model.train()
    x = torch.rand(50, 100, device=device)
    y_pred = model(x) # 50 * 400
    y_tgt = torch.rand(50, 400, device=device)

    复制代码
      loss = criterion(y_pred, y_tgt)
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
      
      # 会导致内存一直增加,需改为train_loss['loss'] += loss.item()
      train_loss['loss'] += loss
    
      if i % 100 == 0:
          train_loss = defaultdict(float)
          model.eval()
          x = torch.rand(50, 100, device=device)
          y_pred = model(x) # 50 * 400
    
          y_tgt = torch.rand(50, 400, device=device)
          loss = criterion(y_pred, y_tgt)
    
          # 会导致内存一直增加,需改为eval_loss['loss'] += loss.item()
          eval_loss['loss'] += loss

以上代码会导致内存占用越来越大,解决的方法是:train_l oss['loss'] += loss.item() 以及 eval_loss['loss'] += loss.item()。值得注意的是,要复现内存越来越大的问题,模型中需要切换model.train() 和 model.eval(),train_loss以及eval_loss的作用是保存模型的平均误差(这里是累积误差),保存到tensorboard中。

相关推荐
夫唯不争,故无尤也17 小时前
PyTorch 的维度变形一站式入门
人工智能·pytorch·python
量子位17 小时前
Nano Banana新玩法无限套娃!“GPT-5都不会处理这种级别的递归”
人工智能·gpt
m0_6501082417 小时前
PaLM:Pathways 驱动的大规模语言模型 scaling 实践
论文阅读·人工智能·palm·谷歌大模型·大规模语言模型·全面评估与行为分析·scaling效应
Ma04071317 小时前
【论文阅读19】-用于PHM的大型语言模型:优化技术与应用综述
人工智能·语言模型·自然语言处理
熊猫钓鱼>_>17 小时前
从零开始构建RPG游戏战斗系统:实战心得与技术要点
开发语言·人工智能·经验分享·python·游戏·ai·qoder
CSDN官方博客17 小时前
CSDN AI社区镜像创作者征集计划正式启动,参与即可获得奖励哦~
人工智能
iMG17 小时前
当自动驾驶技术遭遇【电车难题】,专利制度如何处理?
人工智能·科技·机器学习·自动驾驶·创业创新
swanwei18 小时前
2025年11月22-23日互联网技术热点TOP3及影响分析(AI增量训练框架开源)
网络·人工智能·程序人生·安全·百度
学习编程之路18 小时前
ModelEngine vs Dify / Coze / Versatile 全面对比评测
人工智能·智能体
哥布林学者18 小时前
吴恩达深度学习课程三: 结构化机器学习项目 第一周:机器学习策略(一)正交化调优和评估指标
深度学习·ai