解决pytorch训练的过程中内存一直增加的问题

来自:解决pytorch训练的过程中内存一直增加的问题 - 知乎

pytorch训练中内存一直增加的原因(部分)

  • 代码中存在累加loss,但每步的loss没加item()

    import torch
    import torch.nn as nn
    from collections import defaultdict

    if torch.cuda.is_available():
    device = 'cuda'
    else:
    device = 'cpu'

    model = nn.Linear(100, 400).to(device)
    criterion = nn.L1Loss(reduction='mean').to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    train_loss = defaultdict(float)
    eval_loss = defaultdict(float)

    for i in range(10000):
    model.train()
    x = torch.rand(50, 100, device=device)
    y_pred = model(x) # 50 * 400
    y_tgt = torch.rand(50, 400, device=device)

    复制代码
      loss = criterion(y_pred, y_tgt)
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
      
      # 会导致内存一直增加,需改为train_loss['loss'] += loss.item()
      train_loss['loss'] += loss
    
      if i % 100 == 0:
          train_loss = defaultdict(float)
          model.eval()
          x = torch.rand(50, 100, device=device)
          y_pred = model(x) # 50 * 400
    
          y_tgt = torch.rand(50, 400, device=device)
          loss = criterion(y_pred, y_tgt)
    
          # 会导致内存一直增加,需改为eval_loss['loss'] += loss.item()
          eval_loss['loss'] += loss

以上代码会导致内存占用越来越大,解决的方法是:train_l oss['loss'] += loss.item() 以及 eval_loss['loss'] += loss.item()。值得注意的是,要复现内存越来越大的问题,模型中需要切换model.train() 和 model.eval(),train_loss以及eval_loss的作用是保存模型的平均误差(这里是累积误差),保存到tensorboard中。

相关推荐
档案宝档案管理2 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
IT_Beijing_BIT3 小时前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.8243 小时前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
张较瘦_4 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
小雨青年4 小时前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互
西西弗Sisyphus4 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
王哈哈^_^5 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
仙人掌_lz5 小时前
Multi-Agent的编排模式总结/ Parlant和LangGraph差异对比
人工智能·ai·llm·原型模式·rag·智能体
背包客研究5 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习
门框研究员5 小时前
AI基础设施的临界点:算力、资本与政策的三重博弈
人工智能