解决pytorch训练的过程中内存一直增加的问题

来自:解决pytorch训练的过程中内存一直增加的问题 - 知乎

pytorch训练中内存一直增加的原因(部分)

  • 代码中存在累加loss,但每步的loss没加item()

    import torch
    import torch.nn as nn
    from collections import defaultdict

    if torch.cuda.is_available():
    device = 'cuda'
    else:
    device = 'cpu'

    model = nn.Linear(100, 400).to(device)
    criterion = nn.L1Loss(reduction='mean').to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    train_loss = defaultdict(float)
    eval_loss = defaultdict(float)

    for i in range(10000):
    model.train()
    x = torch.rand(50, 100, device=device)
    y_pred = model(x) # 50 * 400
    y_tgt = torch.rand(50, 400, device=device)

    复制代码
      loss = criterion(y_pred, y_tgt)
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
      
      # 会导致内存一直增加,需改为train_loss['loss'] += loss.item()
      train_loss['loss'] += loss
    
      if i % 100 == 0:
          train_loss = defaultdict(float)
          model.eval()
          x = torch.rand(50, 100, device=device)
          y_pred = model(x) # 50 * 400
    
          y_tgt = torch.rand(50, 400, device=device)
          loss = criterion(y_pred, y_tgt)
    
          # 会导致内存一直增加,需改为eval_loss['loss'] += loss.item()
          eval_loss['loss'] += loss

以上代码会导致内存占用越来越大,解决的方法是:train_l oss['loss'] += loss.item() 以及 eval_loss['loss'] += loss.item()。值得注意的是,要复现内存越来越大的问题,模型中需要切换model.train() 和 model.eval(),train_loss以及eval_loss的作用是保存模型的平均误差(这里是累积误差),保存到tensorboard中。

相关推荐
Danceful_YJ2 小时前
33.Transformer架构
人工智能·pytorch·深度学习
美狐美颜SDK开放平台4 小时前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
AI浩4 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
lqqjuly5 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_436962185 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
宇若-凉凉5 小时前
BERT 完整教程指南
人工智能·深度学习·bert
JD技术委员会6 小时前
如何在跨部门沟通失误后进行协调与澄清
人工智能
PcVue China6 小时前
PcVue X 工控——工厂数字化转型与落地巡回研讨会圆满举行
人工智能·软件工程·scada·监控平台·工控网
StarPrayers.7 小时前
自蒸馏学习方法
人工智能·算法·学习方法
咚咚王者7 小时前
人工智能之编程进阶 Python高级:第十一章 过渡项目
开发语言·人工智能·python