弄懂Redis数据结构和实战(上)

我们都知道 Redis 提供了丰富的数据类型,常见的有五种:String(字符串),Hash(哈希),List(列表),Set(集合)、Zset(有序集合)

随着 Redis 版本的更新,后面又支持了四种数据类型:BitMap(2.2 版新增)、HyperLogLog(2.8 版新增)、GEO(3.2 版新增)、Stream(5.0 版新增)

学习目标:能说出每种数据结构的大体底层实现,及其相关的应用场景!

本文讲解的类型为String、List、Hash。

一口吃不成胖子,慢工出细活,稳稳来!

String

String 是最基本的 key-value 结构,key 是唯一标识,value 是具体的值,value其实不仅是字符串, 也可以是数字(整数或浮点数),value 最多可以容纳的数据长度是 512M

大体的源码结构如下:

c 复制代码
struct sdshdr {

    // 记录 buf 数组中已使用字节的数量
    // 等于 SDS 所保存字符串的长度
    int len;

    // 记录 buf 数组中未使用字节的数量
    int free;

    // 字节数组,用于保存字符串
    char buf[];

};

对比原生C字符串

SDS,简单动态字符串,和我们认为的C字符串不一样。

C 字符串 SDS
获取字符串长度的复杂度为 O(N) 。 获取字符串长度的复杂度为 O(1) 。
API 是不安全的,可能会造成缓冲区溢出。 API 是安全的,不会造成缓冲区溢出。
修改字符串长度 N 次必然需要执行 N 次内存重分配。 修改字符串长度 N 次最多需要执行 N 次内存重分配。
只能保存文本数据。 可以保存文本或者二进制数据。

为什么安全,且获取长度是O(1),并且可以存二进制数据?

因为他通过len长度和free长度来进行维护判断是否结束,有无剩余空间,这样也不会造成缓冲区溢出。

value其实不仅是字符串, 也可以是数字(整数或浮点数),如何实现多态性?

通过编码实现,有三种编码方式:int,embstr,raw

如下是每个情况的内存分布图:

这个字符申的长度小于等于 32 字节,使用embstr,否则使用raw格式。


为什么使用embstr?(分配一块连续的内存空间来保存redisObject和SDS)

  • 内存分配次数从 raw 编码的两次降低为一次;
  • 只需要调用一次内存释放函数;
  • 数据都保存在一块连续的内存里面可以更好的利用 CPU 缓存提升性能。

但是也有缺点。

  • 如果字符串的长度增加需要重新分配内存时。
  • 整个redisObject和sds都需要重新分配空间,所以embstr编码的字符串对象实际上是只读的,redis没有为embstr编码的字符串对象编写任何相应的修改程序。当我们对embstr编码的字符串对象执行任何修改命令(例如append)时,程序会先将对象的编码从embstr转换成raw,然后再执行修改命令。

常用指令

普通字符串的基本操作(SET/GET)

c 复制代码
# 设置 key-value 类型的值
> SET name lin
OK
# 根据 key 获得对应的 value
> GET name
"lin"
# 判断某个 key 是否存在
> EXISTS name
(integer) 1
# 返回 key 所储存的字符串值的长度
> STRLEN name
(integer) 3
# 删除某个 key 对应的值
> DEL name
(integer) 1

批处理设置(MSET/MGET)

c 复制代码
# 批量设置 key-value 类型的值
> MSET key1 value1 key2 value2 
OK
# 批量获取多个 key 对应的 value
> MGET key1 key2 
1) "value1"
2) "value2"

计数器(value为整数的时候使用)(INCRBY/DECRBY)

c 复制代码
# 设置 key-value 类型的值
> SET number 0
OK
# 将 key 中储存的数字值增一
> INCR number
(integer) 1
# 将key中存储的数字值加 10
> INCRBY number 10
(integer) 11
# 将 key 中储存的数字值减一
> DECR number
(integer) 10
# 将key中存储的数字值键 10
> DECRBY number 10
(integer) 0

过期(默认永远不会过期)(秒为单位)

EX表示存在则覆写。

c 复制代码
# 设置 key 在 60 秒后过期(该方法是针对已经存在的key设置过期时间)
> EXPIRE name  60 
(integer) 1
# 查看数据还有多久过期
> TTL name 
(integer) 51

#设置 key-value 类型的值,并设置该key的过期时间为 60 秒
> SET key  value EX 60
OK
> SETEX key  60 value
OK

不存在就插入

c 复制代码
# 不存在就插入(not exists)
>SETNX key value
(integer) 1

应用场景

缓存对象

使用String缓存对象有两种方式

  • 直接缓存整个1对象的JSON
  • 采用Key进行分离为user:ID:属性,用MSET/MGET批量处理。
c 复制代码
SET user:1 '{"name":"xiaolin", "age":18}'

MSET user:1:name xiaolin user:1:age 18 user:2:name xiaomei user:2:age 20

常规计数

注意:Redis的单线程,是针对于网络交互而言的单线程。

因为 Redis 处理命令是单线程,所以执行命令的过程是原子的。因此 String 数据类型适合计数场景,比如计算访问次数、点赞、转发、库存数量等等。

c 复制代码
# 初始化文章的阅读量
> SET aritcle:readcount:1001 0
OK
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 1
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 2
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 3
# 获取对应文章的阅读量
> GET aritcle:readcount:1001
"3"

分布式锁

SET 命令有个 NX 参数可以实现「key不存在才插入」,可以用它来实现分布式锁:

  • 如果 key 不存在,则显示插入成功,可以用来表示加锁成功;
  • 如果 key 存在,则会显示插入失败,可以用来表示加锁失败。
c 复制代码
SET lock_key unique_value NX PX 10000

注意,下面这种写法是错误的,他设置和时间不是原子性的,会导致一个后果就是,时间命令没有执行,而前面锁却一直占用,导致死锁问题。

c 复制代码
setnx lkey lvalue expire lockKey 30

而对于解锁,要防止乱删,所以这个时候,要进行判断,这个是两个操作,要保证原子性,可以使用Lua脚本保证原子性。

c 复制代码
// 释放锁时,先比较 unique_value 是否相等,避免锁的误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

List

List 列表是简单的字符串列表,按照插入顺序排序,可以从头部或尾部向 List 列表添加元素。列表的最大长度为 2^32 - 1,也即每个列表支持超过 40 亿个元素。

用C语言描述,大体如下:

c 复制代码
//节点
typedef struct listNode {

    // 前置节点
    struct listNode *prev;

    // 后置节点
    struct listNode *next;

    // 节点的值
    void *value;

} listNode;

//链表
typedef struct list {

    // 表头节点
    listNode *head;

    // 表尾节点
    listNode *tail;

    // 链表所包含的节点数量
    unsigned long len;

    // 节点值复制函数
    void *(*dup)(void *ptr);

    // 节点值释放函数
    void (*free)(void *ptr);

    // 节点值对比函数
    int (*match)(void *ptr, void *key);

} list;

实现细节

List 类型的底层数据结构是由双向链表或压缩列表实现的:

  • 如果列表的元素个数小于 512 个(默认值,可由 list-max-ziplist-entries 配置),列表每个元素的值都小于 64 字节(默认值,可由 list-max-ziplist-value 配置),Redis 会使用压缩列表作为 List 类型的底层数据结构;
  • 如果列表的元素不满足上面的条件,Redis 会使用双向链表作为 List 类型的底层数据结构;

但是在 Redis 3.2 版本之后,List 数据类型底层数据结构就只由 quicklist 实现了,替代了双向链表和压缩列表。

常用命令

PUSH、POP

c 复制代码
# 将一个或多个值value插入到key列表的表头(最左边),最后的值在最前面
LPUSH key value [value ...] 
# 将一个或多个值value插入到key列表的表尾(最右边)
RPUSH key value [value ...]
# 移除并返回key列表的头元素
LPOP key     
# 移除并返回key列表的尾元素
RPOP key 

# 返回列表key中指定区间内的元素,区间以偏移量start和stop指定,从0开始
LRANGE key start stop

# 从key列表表头弹出一个元素,没有就阻塞timeout秒,如果timeout=0则一直阻塞
BLPOP key [key ...] timeout
# 从key列表表尾弹出一个元素,没有就阻塞timeout秒,如果timeout=0则一直阻塞
BRPOP key [key ...] timeout

应用场景

双端队列模型,很适合用来做为消息队列,在实际情况中,我们也经常如此使用。

消息队列在存取消息时,必须要满足三个需求,分别是消息保序、处理重复的消息和保证消息可靠性

1.做好消息保序

其实这点实现非常简单,只需要保证一方生产,一方消费即可。

但有一些问题,如果生产者没有数据,另外一端一直调用消费,会导致CPU的大量消耗。因为Redis提供了BROP命令。BRPOP命令也称为阻塞式读取,客户端在没有读到队列数据时,自动阻塞,直到有新的数据写入队列,再开始读取新数据 。这样节省了CPU开销。

2、处理重复消息

实现重复消息,那核心点在于如何判断是否重复消息?为每条消息,生产一个全局ID。

c 复制代码
> LPUSH mq "111000102:stock:99"
(integer) 1

在处理的时候,和已处理的消费者ID去对比,即可。

3、保证消息可靠性

List若没有备份,如果消费者程序在处理消息的过程出现了故障或宕机,就会导致消息没有处理完成,那么,消费者程序再次启动后,就没法再次从 List 中读取消息了。

使用BRPOPLPUSH 命令,这个命令的作用是让消费者程序从一个 List 中读取消息,同时,Redis 会把这个消息再插入到另一个 List(可以叫作备份 List)留存

这样,有问题,可以从备份获取消息,从而再次处理。

4、生产消费不平衡

用List做生产消费者,有一个问题在于可能存在生产消费不平衡。而Redis的List不支持消费组实现。

解决方法只能从5.0版本开始说起来了,Stream 同样能够满足消息队列的三大需求,而且它还支持「消费组」形式的消息读取。


Hash

Hash 是一个键值对(key - value)集合,其中 value 的形式入:value=[{field1,value1},...{fieldN,valueN}],适合进行对象存储。

底层代码如下:

c 复制代码
//表定义
typedef struct dictht {

    // 哈希表数组
    dictEntry **table;

    // 哈希表大小
    unsigned long size;

    // 哈希表大小掩码,用于计算索引值
    // 总是等于 size - 1
    unsigned long sizemask;

    // 该哈希表已有节点的数量
    unsigned long used;

} dictht;

//节点
typedef struct dictEntry {

    // 键
    void *key;

    // 值
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
    } v;

    // 指向下个哈希表节点,形成链表
    struct dictEntry *next;

} dictEntry;
c 复制代码
//字典的定义
typedef struct dict {

    // 类型特定函数
    dictType *type;

    // 私有数据
    void *privdata;

    // 哈希表
    dictht ht[2];

    // rehash 索引
    // 当 rehash 不在进行时,值为 -1
    int rehashidx; /* rehashing not in progress if rehashidx == -1 */

} dict;

//操作
typedef struct dictType {

    // 计算哈希值的函数
    unsigned int (*hashFunction)(const void *key);

    // 复制键的函数
    void *(*keyDup)(void *privdata, const void *key);

    // 复制值的函数
    void *(*valDup)(void *privdata, const void *obj);

    // 对比键的函数
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);

    // 销毁键的函数
    void (*keyDestructor)(void *privdata, void *key);

    // 销毁值的函数
    void (*valDestructor)(void *privdata, void *obj);

} dictType;

实现细节

Hash 类型的底层数据结构是由压缩列表或哈希表实现的:

  • 如果哈希类型元素个数小于 512 个(默认值,可由 hash-max-ziplist-entries 配置),所有值小于 64 字节(默认值,可由 hash-max-ziplist-value 配置)的话,Redis 会使用压缩列表作为 Hash 类型的底层数据结构;
  • 如果哈希类型元素不满足上面条件,Redis 会使用哈希表作为 Hash 类型的 底层数据结构。

在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。

渐进式ReHash

核心点:信号量+渐近式

可以发现,在上面,他多留出了一个空的字典,目的其实是为了ReHash,何时ReHash呢?

何时进行收缩与与扩展?看负载因子load factor

c 复制代码
# 负载因子 = 哈希表已保存节点数量 / 哈希表大小
load_factor = ht[0].used / ht[0].size
  1. 服务器目前没有在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 1
  2. 服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 5
  3. 当哈希表的负载因子小于 0.1 时, 程序自动开始对哈希表执行收缩操作。

如何进行ReHash?以2的n次方幂扩大和缩小。

  1. 为字典的 ht[1] 哈希表分配空间, 这个哈希表的空间大小取决于要执行的操作, 以及 ht[0] 当前包含的键值对数量 (也即是 ht[0].used 属性的值):
    • 如果执行的是扩展操作, 那么 ht[1] 的大小为第一个大于等于 ht[0].used * 2 的 2^n (2 的 n 次方幂);
    • 如果执行的是收缩操作, 那么 ht[1] 的大小为第一个大于等于 ht[0].used 的 2^n 。
  2. 将保存在 ht[0] 中的所有键值对 rehash 到 ht[1] 上面: rehash 指的是重新计算键的哈希值和索引值, 然后将键值对放置到 ht[1] 哈希表的指定位置上。
  3. 当 ht[0] 包含的所有键值对都迁移到了 ht[1] 之后 (ht[0] 变为空表), 释放 ht[0] , 将 ht[1] 设置为 ht[0] , 并在 ht[1] 新创建一个空白哈希表, 为下一次 rehash 做准备。

如何渐进式进行ReHash?(只迁不增,通过信号实现)

  1. 为 ht[1] 分配空间, 让字典同时持有 ht[0] 和 ht[1] 两个哈希表。
  2. 在字典中维持一个索引计数器变量 rehashidx , 并将它的值设置为 0 , 表示 rehash 工作正式开始。
  3. 在 rehash 进行期间, 每次对字典执行添加、删除、查找或者更新操作时, 程序除了执行指定的操作以外, 还会顺带将 ht[0] 哈希表在 rehashidx 索引上的所有键值对 rehash 到 ht[1] , 当 rehash 工作完成之后, 程序将 rehashidx 属性的值增一。
  4. 随着字典操作的不断执行, 最终在某个时间点上, ht[0] 的所有键值对都会被 rehash 至 ht[1] , 这时程序将 rehashidx 属性的值设为 -1 , 表示 rehash 操作已完成。

如何在ReHash过程CRUD?(两表CRUD)

因为在进行渐进式 rehash 的过程中, 字典会同时使用 ht[0] 和 ht[1] 两个哈希表, 所以在渐进式 rehash 进行期间, 字典的删除(delete)、查找(find)、更新(update)等操作会在两个哈希表上进行: 比如说, 要在字典里面查找一个键的话, 程序会先在 ht[0] 里面进行查找, 如果没找到的话, 就会继续到 ht[1] 里面进行查找, 诸如此类。

另外, 在渐进式 rehash 执行期间, 新添加到字典的键值对一律会被保存到 ht[1] 里面, 而 ht[0] 则不再进行任何添加操作: 这一措施保证了 ht[0] 包含的键值对数量会只减不增, 并随着 rehash 操作的执行而最终变成空表。

哈希算法

掩码保证范围在size-1

c 复制代码
# 使用字典设置的哈希函数,计算键 key 的哈希值
hash = dict->type->hashFunction(key);

# 使用哈希表的 sizemask 属性和哈希值,计算出索引值
# 根据情况不同, ht[x] 可以是 ht[0] 或者 ht[1]
index = hash & dict->ht[x].sizemask;

常用命令

HSET/HGET

c 复制代码
# 存储一个哈希表key的键值
HSET key field value   
# 获取哈希表key对应的field键值
HGET key field

# 在一个哈希表key中存储多个键值对
HMSET key field value [field value...] 
# 批量获取哈希表key中多个field键值
HMGET key field [field ...]       
# 删除哈希表key中的field键值
HDEL key field [field ...]    

# 返回哈希表key中field的数量
HLEN key       
# 返回哈希表key中所有的键值
HGETALL key 

# 为哈希表key中field键的值加上增量n
HINCRBY key field n      

应用场景

缓存对象

Hash类型,很适合结构与对象映射。

c 复制代码
# 存储一个哈希表uid:1的键值
> HSET uid:1 name Tom age 15
2
# 存储一个哈希表uid:2的键值
> HSET uid:2 name Jerry age 13
2
# 获取哈希表用户id为1中所有的键值
> HGETALL uid:1
1) "name"
2) "Tom"
3) "age"
4) "15"

那么,上面在讲String也可以用JSON缓存对象,那应该如何选择?
一般对象用 String + Json 存储,对象中某些频繁变化的属性可以考虑抽出来用 Hash 类型存储。

购物车

以用户 id 为 key,商品 id 为 field,商品数量为 value,恰好构成了购物车的3个要素。

涉及的命令如下:

  • 添加商品:HSET cart:{用户id} {商品id} 1
  • 添加数量:HINCRBY cart:{用户id} {商品id} 1
  • 商品总数:HLEN cart:{用户id}
  • 删除商品:HDEL cart:{用户id} {商品id}
  • 获取购物车所有商品:HGETALL cart:{用户id}

当前仅仅是将商品ID存储到了Redis 中,在回显商品具体信息的时候,还需要拿着商品 id 查询一次数据库,获取完整的商品的信息。

相关推荐
优创学社21 小时前
基于springboot的社区生鲜团购系统
java·spring boot·后端
why技术1 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
幽络源小助理1 小时前
SpringBoot基于Mysql的商业辅助决策系统设计与实现
java·vue.js·spring boot·后端·mysql·spring
Hello.Reader2 小时前
Redis 延迟排查与优化全攻略
数据库·redis·缓存
ai小鬼头2 小时前
AIStarter如何助力用户与创作者?Stable Diffusion一键管理教程!
后端·架构·github
简佐义的博客2 小时前
破解非模式物种GO/KEGG注释难题
开发语言·数据库·后端·oracle·golang
Code blocks3 小时前
使用Jenkins完成springboot项目快速更新
java·运维·spring boot·后端·jenkins
追逐时光者3 小时前
一款开源免费、通用的 WPF 主题控件包
后端·.net