百度云IOCR自定义模版分类器进行文字识别(非通用文字识别)

  • 模版管理

云账号登录

访问模版管理地址:点击下面地址新建模版

百度智能云-登录https://ai.baidu.com/iocr?castk=4819agr76c7d09971d248#/templatelist/1

  • 添加模版

如果有模版,识别效果不理想可以编辑上述模版,如果新的报表格式可以新建模版

分为两步:

参照字段:这个报表特有的特征
识别区:框选识别区域,可以调整大小,直到识别效果最优

  • 分类器训练(AI) 自动根据上传标本图像自动识别模版并识别

点击编辑或者新增,选择模版,上传海量数据标本,进行模型训练

  • 模版部分 Over !

  • Java代码实现

文档地址: 文字识别OCR (baidu.com)https://ai.baidu.com/ai-doc/OCR/Ek3h7y961

工具类先可以自行下载

java 复制代码
package com.baidu.ocr;

import com.baidu.ai.aip.utils.Base64Util;
import com.baidu.ai.aip.utils.FileUtil;
import com.baidu.ai.aip.utils.HttpUtil;


public class App 
{
    public static void main(String[] args) throws Exception
    {
        /**
         * 重要提示代码中所需工具类
         * FileUtil,Base64Util,HttpUtil,GsonUtils请从
         * https://ai.baidu.com/file/658A35ABAB2D404FBF903F64D47C1F72
         * https://ai.baidu.com/file/C8D81F3301E24D2892968F09AE1AD6E2
         * https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
         * https://ai.baidu.com/file/470B3ACCA3FE43788B5A963BF0B625F3
         * 下载
         */
        // iocr识别apiUrl
        String recogniseUrl = "https://aip.baidubce.com/rest/2.0/solution/v1/iocr/recognise";


        String filePath = "path	oyourimage.jpg";
        try {
                byte[] imgData = FileUtil.readFileByBytes(filePath);
                String imgStr = Base64Util.encode(imgData);
                // 请求模板参数
                String recogniseParams = "templateSign=your_template_sign&image=" + URLEncoder.encode(imgStr, "UTF-8");
                // 请求分类器参数
                String classifierParams = "classifierId=your_classfier_id&image=" + URLEncoder.encode(imgStr, "UTF-8");
                
                
                String accessToken = "your_access_token";
                // 请求模板识别
                String result = HttpUtil.post(recogniseUrl, accessToken, recogniseParams);
                // 请求分类器识别
                // String result = HttpUtil.post(recogniseUrl, accessToken, classifierParams);
                
                System.out.println(result);
        } catch (Exception e) {
                e.printStackTrace();
        }
    }
}
  • 识别模式选择

如果模版少,自行维护模版,可以使用选择模版的方式进行识别,模版过多,可以使用分类器训练模型,自动根据上传的图片识别模版并识别,此为终极奥义!

相关推荐
权泽谦13 小时前
医疗预测项目:CNN + XGBoost 实战全流程
人工智能·神经网络·cnn
汗流浃背了吧,老弟!13 小时前
Transformer-初识
人工智能·深度学习·transformer
Lkygo13 小时前
Embedding 和 Reranker 模型
人工智能·embedding·vllm·sglang
竹君子13 小时前
英伟达的AI芯片架构演进的三个阶段
人工智能
Chris_121913 小时前
Halcon学习笔记-Day5
人工智能·笔记·python·学习·机器学习·halcon
蓝程序13 小时前
Spring AI学习 程序接入大模型
java·人工智能·spring
西柚小萌新13 小时前
【论文阅读】--PEACE:基于多模态大语言模型的地质图全息理解赋能框架
人工智能·语言模型·自然语言处理
Ai野生菌13 小时前
论文解读 | 当“提示词”学会绕路:用拓扑学方法一次击穿多智能体安全防线
人工智能·深度学习·安全·语言模型·拓扑学
狮子座明仔13 小时前
MegaBeam-Mistral-7B:扩展上下文而非参数的高效长文本处理
人工智能·深度学习·自然语言处理·知识图谱
有赞技术13 小时前
有赞AI研发全流程落地实践
人工智能