百度云IOCR自定义模版分类器进行文字识别(非通用文字识别)

  • 模版管理

云账号登录

访问模版管理地址:点击下面地址新建模版

百度智能云-登录https://ai.baidu.com/iocr?castk=4819agr76c7d09971d248#/templatelist/1

  • 添加模版

如果有模版,识别效果不理想可以编辑上述模版,如果新的报表格式可以新建模版

分为两步:

参照字段:这个报表特有的特征
识别区:框选识别区域,可以调整大小,直到识别效果最优

  • 分类器训练(AI) 自动根据上传标本图像自动识别模版并识别

点击编辑或者新增,选择模版,上传海量数据标本,进行模型训练

  • 模版部分 Over !

  • Java代码实现

文档地址: 文字识别OCR (baidu.com)https://ai.baidu.com/ai-doc/OCR/Ek3h7y961

工具类先可以自行下载

java 复制代码
package com.baidu.ocr;

import com.baidu.ai.aip.utils.Base64Util;
import com.baidu.ai.aip.utils.FileUtil;
import com.baidu.ai.aip.utils.HttpUtil;


public class App 
{
    public static void main(String[] args) throws Exception
    {
        /**
         * 重要提示代码中所需工具类
         * FileUtil,Base64Util,HttpUtil,GsonUtils请从
         * https://ai.baidu.com/file/658A35ABAB2D404FBF903F64D47C1F72
         * https://ai.baidu.com/file/C8D81F3301E24D2892968F09AE1AD6E2
         * https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
         * https://ai.baidu.com/file/470B3ACCA3FE43788B5A963BF0B625F3
         * 下载
         */
        // iocr识别apiUrl
        String recogniseUrl = "https://aip.baidubce.com/rest/2.0/solution/v1/iocr/recognise";


        String filePath = "path	oyourimage.jpg";
        try {
                byte[] imgData = FileUtil.readFileByBytes(filePath);
                String imgStr = Base64Util.encode(imgData);
                // 请求模板参数
                String recogniseParams = "templateSign=your_template_sign&image=" + URLEncoder.encode(imgStr, "UTF-8");
                // 请求分类器参数
                String classifierParams = "classifierId=your_classfier_id&image=" + URLEncoder.encode(imgStr, "UTF-8");
                
                
                String accessToken = "your_access_token";
                // 请求模板识别
                String result = HttpUtil.post(recogniseUrl, accessToken, recogniseParams);
                // 请求分类器识别
                // String result = HttpUtil.post(recogniseUrl, accessToken, classifierParams);
                
                System.out.println(result);
        } catch (Exception e) {
                e.printStackTrace();
        }
    }
}
  • 识别模式选择

如果模版少,自行维护模版,可以使用选择模版的方式进行识别,模版过多,可以使用分类器训练模型,自动根据上传的图片识别模版并识别,此为终极奥义!

相关推荐
飞哥数智坊12 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三12 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯13 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet15 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算16 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心16 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar17 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai17 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI18 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear19 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp