百度云IOCR自定义模版分类器进行文字识别(非通用文字识别)

  • 模版管理

云账号登录

访问模版管理地址:点击下面地址新建模版

百度智能云-登录https://ai.baidu.com/iocr?castk=4819agr76c7d09971d248#/templatelist/1

  • 添加模版

如果有模版,识别效果不理想可以编辑上述模版,如果新的报表格式可以新建模版

分为两步:

参照字段:这个报表特有的特征
识别区:框选识别区域,可以调整大小,直到识别效果最优

  • 分类器训练(AI) 自动根据上传标本图像自动识别模版并识别

点击编辑或者新增,选择模版,上传海量数据标本,进行模型训练

  • 模版部分 Over !

  • Java代码实现

文档地址: 文字识别OCR (baidu.com)https://ai.baidu.com/ai-doc/OCR/Ek3h7y961

工具类先可以自行下载

java 复制代码
package com.baidu.ocr;

import com.baidu.ai.aip.utils.Base64Util;
import com.baidu.ai.aip.utils.FileUtil;
import com.baidu.ai.aip.utils.HttpUtil;


public class App 
{
    public static void main(String[] args) throws Exception
    {
        /**
         * 重要提示代码中所需工具类
         * FileUtil,Base64Util,HttpUtil,GsonUtils请从
         * https://ai.baidu.com/file/658A35ABAB2D404FBF903F64D47C1F72
         * https://ai.baidu.com/file/C8D81F3301E24D2892968F09AE1AD6E2
         * https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
         * https://ai.baidu.com/file/470B3ACCA3FE43788B5A963BF0B625F3
         * 下载
         */
        // iocr识别apiUrl
        String recogniseUrl = "https://aip.baidubce.com/rest/2.0/solution/v1/iocr/recognise";


        String filePath = "path	oyourimage.jpg";
        try {
                byte[] imgData = FileUtil.readFileByBytes(filePath);
                String imgStr = Base64Util.encode(imgData);
                // 请求模板参数
                String recogniseParams = "templateSign=your_template_sign&image=" + URLEncoder.encode(imgStr, "UTF-8");
                // 请求分类器参数
                String classifierParams = "classifierId=your_classfier_id&image=" + URLEncoder.encode(imgStr, "UTF-8");
                
                
                String accessToken = "your_access_token";
                // 请求模板识别
                String result = HttpUtil.post(recogniseUrl, accessToken, recogniseParams);
                // 请求分类器识别
                // String result = HttpUtil.post(recogniseUrl, accessToken, classifierParams);
                
                System.out.println(result);
        } catch (Exception e) {
                e.printStackTrace();
        }
    }
}
  • 识别模式选择

如果模版少,自行维护模版,可以使用选择模版的方式进行识别,模版过多,可以使用分类器训练模型,自动根据上传的图片识别模版并识别,此为终极奥义!

相关推荐
paopao_wu10 分钟前
人脸检测与识别-InsightFace:特征向量提取与识别
人工智能·目标检测
Aevget22 分钟前
MyEclipse全新发布v2025.2——AI + Java 24 +更快的调试
java·ide·人工智能·eclipse·myeclipse
IT_陈寒30 分钟前
React 18并发渲染实战:5个核心API让你的应用性能飙升50%
前端·人工智能·后端
韩曙亮34 分钟前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
科普瑞传感仪器43 分钟前
从轴孔装配到屏幕贴合:六维力感知的机器人柔性对位应用详解
前端·javascript·数据库·人工智能·机器人·自动化·无人机
说私域1 小时前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的社群运营创新研究
人工智能·小程序·开源
程序员小灰1 小时前
谷歌AI模型Gemini 3.0 Pro,已经杀疯了!
人工智能·aigc·gemini
杨浦老苏1 小时前
AI驱动的图表生成器Next-AI-Draw.io
人工智能·docker·ai·群晖·draw.io
饭饭大王6661 小时前
深度学习在计算机视觉中的最新进展
人工智能·深度学习·计算机视觉
John_ToDebug1 小时前
浏览器内核的“智变”:从渲染引擎到AI原生操作系统的征途
人工智能·chrome