百度云IOCR自定义模版分类器进行文字识别(非通用文字识别)

  • 模版管理

云账号登录

访问模版管理地址:点击下面地址新建模版

百度智能云-登录https://ai.baidu.com/iocr?castk=4819agr76c7d09971d248#/templatelist/1

  • 添加模版

如果有模版,识别效果不理想可以编辑上述模版,如果新的报表格式可以新建模版

分为两步:

参照字段:这个报表特有的特征
识别区:框选识别区域,可以调整大小,直到识别效果最优

  • 分类器训练(AI) 自动根据上传标本图像自动识别模版并识别

点击编辑或者新增,选择模版,上传海量数据标本,进行模型训练

  • 模版部分 Over !

  • Java代码实现

文档地址: 文字识别OCR (baidu.com)https://ai.baidu.com/ai-doc/OCR/Ek3h7y961

工具类先可以自行下载

java 复制代码
package com.baidu.ocr;

import com.baidu.ai.aip.utils.Base64Util;
import com.baidu.ai.aip.utils.FileUtil;
import com.baidu.ai.aip.utils.HttpUtil;


public class App 
{
    public static void main(String[] args) throws Exception
    {
        /**
         * 重要提示代码中所需工具类
         * FileUtil,Base64Util,HttpUtil,GsonUtils请从
         * https://ai.baidu.com/file/658A35ABAB2D404FBF903F64D47C1F72
         * https://ai.baidu.com/file/C8D81F3301E24D2892968F09AE1AD6E2
         * https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
         * https://ai.baidu.com/file/470B3ACCA3FE43788B5A963BF0B625F3
         * 下载
         */
        // iocr识别apiUrl
        String recogniseUrl = "https://aip.baidubce.com/rest/2.0/solution/v1/iocr/recognise";


        String filePath = "path	oyourimage.jpg";
        try {
                byte[] imgData = FileUtil.readFileByBytes(filePath);
                String imgStr = Base64Util.encode(imgData);
                // 请求模板参数
                String recogniseParams = "templateSign=your_template_sign&image=" + URLEncoder.encode(imgStr, "UTF-8");
                // 请求分类器参数
                String classifierParams = "classifierId=your_classfier_id&image=" + URLEncoder.encode(imgStr, "UTF-8");
                
                
                String accessToken = "your_access_token";
                // 请求模板识别
                String result = HttpUtil.post(recogniseUrl, accessToken, recogniseParams);
                // 请求分类器识别
                // String result = HttpUtil.post(recogniseUrl, accessToken, classifierParams);
                
                System.out.println(result);
        } catch (Exception e) {
                e.printStackTrace();
        }
    }
}
  • 识别模式选择

如果模版少,自行维护模版,可以使用选择模版的方式进行识别,模版过多,可以使用分类器训练模型,自动根据上传的图片识别模版并识别,此为终极奥义!

相关推荐
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技5 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了7 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好7 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案7 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记