Flink之JDBCSink连接MySQL

输出到MySQL

  1. 添加依赖
xml 复制代码
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-jdbc</artifactId>
  <version>3.1.0-1.17</version>
</dependency>
<dependency>
    <groupId>com.mysql</groupId>
    <artifactId>mysql-connector-j</artifactId>
    <version>8.0.32</version>
</dependency>
  1. 启动MySQL, 在test库下建表clicks
sql 复制代码
CREATE TABLE `clicks` (
  `user` VARCHAR(100) NOT NULL,
  `url` VARCHAR(100) DEFAULT NULL,
  `ts` BIGINT DEFAULT NULL
) ENGINE=INNODB DEFAULT CHARSET=utf8
  1. 示例代码
java 复制代码
public class Flink04_JdbcSink {
    public static void main(String[] args) {
        //1.创建运行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //默认是最大并行度
        env.setParallelism(1);

        DataStreamSource<Event> ds = Flink06_EventSource.getEventSource(env);

        //
        SinkFunction<Event> sink = JdbcSink.sink(
                "insert into clicks(user, url, ts) values (?,?,?)"
                , new JdbcStatementBuilder<Event>() {
                    @Override
                    public void accept(PreparedStatement preparedStatement, Event event) throws SQLException {
                        //给SQL的占位符赋值
                        preparedStatement.setString(1, event.getUser());
                        preparedStatement.setString(2, event.getUrl());
                        preparedStatement.setLong(3, event.getTs());
                    }
                },
                JdbcExecutionOptions.builder()
                        .withBatchSize(5)
                        .withBatchIntervalMs(10000)
                        .withMaxRetries(3)
                        .build()
                ,
                new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                        .withDriverName("com.mysql.cj.jdbc.Driver")
                        .withUsername("root")
                        .withPassword("000000")
                        .withUrl("jdbc:mysql://hadoop102:3306/flink")
                        .build()
        );

        ds.addSink(sink);

        try {
            env.execute();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
}

MySQL的幂等性处理

  1. 将插入关键字替换为replace,如果主键重复,将除了主键外的所有字段都替换。
  2. 使用on duplicate key update 字段名 = values(字段名)语法,如果主键重复,可以选择部分字段进行替换,其余字段保持不变。
  3. 示例代码
java 复制代码
public class Flink05_JdbcSinkReplace {
    public static void main(String[] args) {
        //1.创建运行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //默认是最大并行度
        env.setParallelism(1);

        DataStreamSource<Event> ds = Flink06_EventSource.getEventSource(env);

        SingleOutputStreamOperator<WordCount> countDs =
                ds.map(event -> new WordCount(event.getUrl(), 1))
                .keyBy(WordCount::getWord)
                .sum("count");

        //
        SinkFunction<WordCount> sink = JdbcSink.sink(
//                "replace into url_count(url, cnt) values (?,?)"
                "insert into url_count(url, cnt) values(?,?) on duplicate key update cnt = values(cnt)"
                ,
                new JdbcStatementBuilder<WordCount>() {
                    @Override
                    public void accept(PreparedStatement preparedStatement, WordCount wordCount) throws SQLException {
                        //注意:这里的起始下标是1
                        preparedStatement.setString(1, wordCount.getWord());
                        preparedStatement.setInt(2, wordCount.getCount());
                    }
                }
                ,
                JdbcExecutionOptions.builder()
                        .withBatchSize(5)
                        .withBatchIntervalMs(10000)
                        .withMaxRetries(3)
                        .build()
                ,
                new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                        .withDriverName("com.mysql.cj.jdbc.Driver")
                        .withUsername("root")
                        .withPassword("000000")
                        .withUrl("jdbc:mysql://hadoop102:3306/flink")
                        .build()
        );

        countDs.addSink(sink);

        try {
            env.execute();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
}
相关推荐
vx_dmxq2119 小时前
【微信小程序学习交流平台】(免费领源码+演示录像)|可做计算机毕设Java、Python、PHP、小程序APP、C#、爬虫大数据、单片机、文案
java·spring boot·python·mysql·微信小程序·小程序·idea
武子康9 小时前
大数据-167 ELK Elastic Stack(ELK) 实战:架构要点、索引与排错清单
大数据·后端·elasticsearch
m***923810 小时前
【SQL】MySQL中的字符串处理函数:concat 函数拼接字符串,COALESCE函数处理NULL字符串
数据库·sql·mysql
二进制_博客10 小时前
eventTime+watermarker+allowedLateness到底窗口关闭时间是什么?
flink·kafka
TracyCoder12310 小时前
MySQL 实战宝典(八):Java后端MySQL分库分表工具解析与选型秘籍
java·开发语言·mysql
艾莉丝努力练剑11 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
智能相对论11 小时前
10万人共同选择的背后,Rokid乐奇有自己的“破圈秘籍”
大数据·智能眼镜
人大博士的交易之路11 小时前
龙虎榜——20251128
大数据·数学建模·数据挖掘·数据分析·缠论·龙虎榜·道琼斯结构
YJlio11 小时前
ShareEnum 学习笔记(9.5):内网共享体检——开放共享、匿名访问与权限风险
大数据·笔记·学习
wang_yb12 小时前
告别盲人摸象,数据分析的抽样方法总结
大数据·databook