超分辨率重建

意义

客观世界的场景含有丰富多彩的信息,但是由于受到硬件设备的成像条件和成像方式的限制,难以获得原始场景中的所有信息。而且,硬件设备分辨率的限制会不可避免地使图像丢失某些高频细节信息。在当今信息迅猛发展的时代,在卫星遥感、医学影像、多媒体视频等领域中对图像质量的要求越来越高,人们不断寻求更高质量和更高分辨率的图像,来满足日益增长的需求。

空间分辨率的大小是衡量图像质量的一个重要指标,也是将图像应用到实际生活中重要的参数之一。分辨率越高的图像含有的细节信息越多,图像清晰度越高,在实际应用中对各种目标的识别和判断也更加准确。

但是通过提高硬件性能从而提高图像的分辨率的成本高昂。因此,为了满足对图像分辨率的需求,又不增加硬件成本的前提下,依靠软件方法的图像超分辨率重建应运而生。

超分辨率图像重建是指从一系列有噪声、模糊及欠采样的低分辨率图像序列中恢复出一幅高分辨率图像的过程。可以针对现有成像系统普遍存在分辨率低的缺陷,运用某些算法,提高所获得低分辨率图像的质量。因此,超分辨率重建算法的研究具有广阔的发展空间。

方法的具体细节

评价指标
峰值信噪比

峰值信噪比(Peak Signal-to-Noise Ratio), 是信号的最大功率和信号噪声功率之比,来测量被压缩的重构图像的质量,通常以分贝来表示。PSNR指标值越高,说明图像质量越好。

SSIM计算公式如下:

MSE表示两个图像之间对应像素之间差值平方的均值。

表示图像中像素的最大值。对于8bit图像,一般取255。

表示图像X在 ij 处的像素值

表示图像Y在 ij 处的像素值

结构相似性评价

结构相似性评价(Structural Similarity Index), 是衡量两幅图像相似度的指标,取值范围为0到1。SSIM指标值越大,说明图像失真程度越小,图像质量越好。

SSIM计算公式如下:

这两种方式,一般情况下能较为准确地评价重建效果。但是毕竟人眼的感受是复杂丰富的,所以有时也会出现一定的偏差。

EDSR

SRResNet在SR的工作中引入了残差块,取得了更深层的网络,而EDSR是对SRResNet的一种提升,其最有意义的模型性能提升是去除掉了SRResNet多余的模块(BN层)

EDSR把批规范化处理(batch normalization, BN)操作给去掉了。

论文中说,原始的ResNet最一开始是被提出来解决高层的计算机视觉问题,比如分类和检测,直接把ResNet的结构应用到像超分辨率这样的低层计算机视觉问题,显然不是最优的。由于批规范化层消耗了与它前面的卷积层相同大小的内存,在去掉这一步操作后,相同的计算资源下,EDSR就可以堆叠更多的网络层或者使每层提取更多的特征,从而得到更好的性能表现。EDSR用L1损失函数来优化网络模型。

1.解压数据集

因为训练时间可能不是很长,所以这里用了BSD100,可以自行更换为DIV2K或者coco

#  !unzip -o /home/aistudio/data/data121380/DIV2K_train_HR.zip -d train

# !unzip -o  /home/aistudio/data/data121283/Set5.zip -d test
2.定义dataset
python 复制代码
import os
from paddle.io import Dataset
from paddle.vision import transforms
from PIL import Image
import random
import paddle
import PIL
import numbers
import numpy as np
from PIL import Image
from paddle.vision.transforms import BaseTransform
from paddle.vision.transforms import functional as F
import matplotlib.pyplot as plt


class SRDataset(Dataset):

    def __init__(self, data_path, crop_size, scaling_factor):
        """
        :参数 data_path: 图片文件夹路径
        :参数 crop_size: 高分辨率图像裁剪尺寸  (实际训练时不会用原图进行放大,而是截取原图的一个子块进行放大)
        :参数 scaling_factor: 放大比例
        """

        self.data_path=data_path
        self.crop_size = int(crop_size)
        self.scaling_factor = int(scaling_factor)
        self.images_path=[]

        # 如果是训练,则所有图像必须保持固定的分辨率以此保证能够整除放大比例
        # 如果是测试,则不需要对图像的长宽作限定

        # 读取图像路径
        for name in os.listdir(self.data_path):
            self.images_path.append(os.path.join(self.data_path,name))

        # 数据处理方式
        self.pre_trans=transforms.Compose([
                                # transforms.CenterCrop(self.crop_size),
                                transforms.RandomCrop(self.crop_size),
                                transforms.RandomHorizontalFlip(0.5),
                                transforms.RandomVerticalFlip(0.5),
                                # transforms.ColorJitter(brightness=0.3, contrast=0.3, hue=0.3),
                                ])

        self.input_transform = transforms.Compose([
                                transforms.Resize(self.crop_size//self.scaling_factor),
                                transforms.ToTensor(),
                                transforms.Normalize(mean=[0.5],std=[0.5]),
                                ])

        self.target_transform = transforms.Compose([
                                transforms.ToTensor(),
                                transforms.Normalize(mean=[0.5],std=[0.5]),
                                ])


    def __getitem__(self, i):
        # 读取图像
        img = Image.open(self.images_path[i], mode='r')
        img = img.convert('RGB')
        img=self.pre_trans(img)

        lr_img = self.input_transform(img)
        hr_img = self.target_transform(img.copy())
        
        return lr_img, hr_img


    def __len__(self):
        return len(self.images_path)

测试dataset

python 复制代码
# 单元测试

train_path='train/DIV2K_train_HR'
test_path='test'
ds=SRDataset(train_path,96,2)
l,h=ds[1]

# print(type(l))
print(l.shape)
print(h.shape)

l=np.array(l)
h=np.array(h)
print(type(l))
l=l.transpose(2,1,0)
h=h.transpose(2,1,0)
print(l.shape)
print(h.shape)

plt.subplot(1, 2, 1)
plt.imshow(((l+1)/2))
plt.title('l')
plt.subplot(1, 2, 2)
plt.imshow(((h+1)/2))
plt.title('h')
plt.show()

定义网络结构

较rsresnet少了归一化层,以及更深的残差块

python 复制代码
from paddle.nn import Layer
from paddle import nn
import math


n_feat = 256
kernel_size = 3

# 残差块 尺寸不变
class _Res_Block(nn.Layer):
    def __init__(self):
        super(_Res_Block, self).__init__()
        self.res_conv = nn.Conv2D(n_feat, n_feat, kernel_size, padding=1)
        self.relu = nn.ReLU()

    def forward(self, x):
        y = self.relu(self.res_conv(x))
        y = self.res_conv(y)
        y *= 0.1
        # 残差加入
        y = paddle.add(y, x)
        return y


class EDSR(nn.Layer):
    def __init__(self):
        super(EDSR, self).__init__()

        in_ch = 3
        num_blocks = 32

        self.conv1 = nn.Conv2D(in_ch, n_feat, kernel_size, padding=1)
        # 扩大
        self.conv_up = nn.Conv2D(n_feat, n_feat * 4, kernel_size, padding=1)
        self.conv_out = nn.Conv2D(n_feat, in_ch, kernel_size, padding=1)

        self.body = self.make_layer(_Res_Block, num_blocks)
        # 上采样
        self.upsample = nn.Sequential(self.conv_up, nn.PixelShuffle(2))

    # 32个残差块
    def make_layer(self, block, layers):
        res_block = []
        for _ in range(layers):
            res_block.append(block())
        return nn.Sequential(*res_block)

    def forward(self, x):

        out = self.conv1(x)
        out = self.body(out)
        out = self.upsample(out)
        out = self.conv_out(out)

        return out

看paddle能不能用gpu

python 复制代码
import paddle
print(paddle.device.get_device())


paddle.device.set_device('gpu:0')

训练,一般4个小时就可以达到一个不错的效果,set5中psnr可以达到27左右,当然这时间还是太少了

python 复制代码
import os
from math import log10
from paddle.io import DataLoader
import paddle.fluid as fluid
import warnings
from paddle.static import InputSpec

if __name__ == '__main__':
    warnings.filterwarnings("ignore", category=Warning)  # 过滤报警信息

    train_path='train/DIV2K_train_HR'
    test_path='test'

    crop_size = 96      # 高分辨率图像裁剪尺寸
    scaling_factor = 2  # 放大比例

    # 学习参数
    checkpoint = './work/edsr_paddle'   # 预训练模型路径,如果不存在则为None
    batch_size = 30    # 批大小
    start_epoch = 0     # 轮数起始位置
    epochs = 10000        # 迭代轮数
    workers = 4         # 工作线程数
    lr = 1e-4           # 学习率

    # 先前的psnr
    pre_psnr=32.35

    try:
        model = paddle.jit.load(checkpoint)
        print('加载先前模型成功')
    except:
        print('未加载原有模型训练')
        model = EDSR()

    # 初始化优化器
    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=lr, step_size=1, gamma=0.99, verbose=True)
    optimizer = paddle.optimizer.Adam(learning_rate=scheduler,
                                    parameters=model.parameters())

    criterion = nn.MSELoss()

    train_dataset = SRDataset(train_path, crop_size, scaling_factor)
    test_dataset = SRDataset(test_path, crop_size, scaling_factor)

    train_loader = DataLoader(train_dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=workers,
        )

    test_loader = DataLoader(test_dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=workers,
        )

    for epoch in range(start_epoch, epochs+1):

        model.train()  # 训练模式:允许使用批样本归一化
        train_loss=0
        n_iter_train = len(train_loader)
        train_psnr=0
        # 按批处理
        for i, (lr_imgs, hr_imgs) in enumerate(train_loader):
            lr_imgs = lr_imgs
            hr_imgs = hr_imgs

            sr_imgs = model(lr_imgs)
            loss = criterion(sr_imgs, hr_imgs)  
            optimizer.clear_grad()
            loss.backward()
            optimizer.step()
            train_loss+=loss.item()
            psnr = 10 * log10(1 / loss.item())
            train_psnr+=psnr

        epoch_loss_train=train_loss / n_iter_train
        train_psnr=train_psnr/n_iter_train

        print(f"Epoch {epoch}. Training loss: {epoch_loss_train} Train psnr {train_psnr}DB")


        model.eval()  # 测试模式
        test_loss=0
        all_psnr = 0
        n_iter_test = len(test_loader)

        with paddle.no_grad():
            for i, (lr_imgs, hr_imgs) in enumerate(test_loader):
                lr_imgs = lr_imgs
                hr_imgs = hr_imgs

                sr_imgs = model(lr_imgs)
                loss = criterion(sr_imgs, hr_imgs)

                psnr = 10 * log10(1 / loss.item())
                all_psnr+=psnr
                test_loss+=loss.item()
        
        epoch_loss_test=test_loss/n_iter_test
        epoch_psnr=all_psnr / n_iter_test

        print(f"Epoch {epoch}. Testing loss: {epoch_loss_test} Test psnr{epoch_psnr} dB")

        if epoch_psnr>pre_psnr:
            paddle.jit.save(model, checkpoint,input_spec=[InputSpec(shape=[1,3,48,48], dtype='float32')])
            pre_psnr=epoch_psnr
            print('模型更新成功')

        scheduler.step()

测试,需要自己上传一张低分辨率的图片

python 复制代码
import paddle
from paddle.vision import transforms
import PIL.Image as Image
import numpy as np


imgO=Image.open('img_003_SRF_2_LR.png',mode="r")  #选择自己图片的路径
img=transforms.ToTensor()(imgO).unsqueeze(0)

#导入模型
net=paddle.jit.load("./work/edsr_paddle")

source = net(img)[0, :, :, :]
source = source.cpu().detach().numpy()  # 转为numpy
source = source.transpose((1, 2, 0))  # 切换形状
source = np.clip(source, 0, 1)  # 修正图片
img = Image.fromarray(np.uint8(source * 255))

plt.figure(figsize=(9,9))
plt.subplot(1, 2, 1)
plt.imshow(imgO)
plt.title('input')
plt.subplot(1, 2, 2)
plt.imshow(img)
plt.title('output')
plt.show()

img.save('./sr.png')

EDSR_X2效果

双线性插值放大效果

EDSR_X2放大效果

双线性插值放大效果

EDSR_X2放大效果

原文: EDSR图像超分重构

相关推荐
神奇夜光杯2 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠5 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon15 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~21 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨23 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画27 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云29 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓38 分钟前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调
zzZ_CMing38 分钟前
大语言模型训练的全过程:预训练、微调、RLHF
人工智能·自然语言处理·aigc
newxtc39 分钟前
【旷视科技-注册/登录安全分析报告】
人工智能·科技·安全·ddddocr