Embedding And Word2vec

Embedding与向量数据库:

Embedding 简单地说就是 N 维数字向量 ,可以代表任何东西,包括文本、音乐、视频等等。要创建一个Embedding有很多方法,可以使用Word2vec,也可以使用OpenAI 的 Ada。创建好的Embedding,就可以存入向量数据库中

这里举个例子,比如"你好",用W2做Em后,可以表示为[0.1,0.5,0.7],而"嗨"用W2做Em后,可以表示为[0.2,0.5,0.6],我们可以使用余弦相似度的方法来计算他们的相似度:

Cosine Similarity(A,B) = A·B / |A|*|B|,其中A和B分别表示两个不同维度的embedding,|A|和|B|分别表示A和B的模长

余弦相似度的值越接近1,表示两个向量的方向越接近,即两个embedding越相似。大概就如下图所示

word2Vec:

  • Word2Vec是语言模型中的一种,它是从大量文本预料中以无监督方式学习语义知识的模型,被广泛地应用于自然语言处理中。
  • Word2Vec是用来生成词向量的工具,而词向量与语言模型有着密切的关系。
  • Word2Vec是轻量级的神经网络,其模型仅仅包括输入层、隐藏层和输出层,模型框架根据输入输出的不同,主要包括CBOW和Skip-gram模型

CBOW:

就是"完形填空",知道词w上下文的情况下,预测w是什么词。

1.简单CBOW,输入一个词,预测输出一个词

从上图可以看出,实际上是很简单的一个BP神经网络,输入就是一个一维的向量,然后和第一个权重矩阵w进行乘法,获取隐含层的值h,然后h再和第二个权重矩阵W',相乘后得到输出(有多少个字,就有多少种输出),最后的输出经过softMax函数,就可以得到每个字的概率,概率最大的,就是我们预测的字。

2.复杂CBOW,输入多个词,预测一个词

和simple CBOW不同之处在于,输入由1个词变成了C个词,每个输入到达隐藏层都会经过相同的权重矩阵W,隐藏层h的值变成了多个词乘上权重矩阵之后加和求平均值。

3.CBOW的训练

CBOW模型的训练目标是最大化给定上下文时中心单词出现的概率,即最大化y[t]。这等价于最小化交叉熵损失函数

交叉熵损失函数可以通过反向传播算法来求导,并通过随机梯度下降法来更新参数。参数包括输入层到隐藏层之间的权重矩阵W(大小为V×N),以及隐藏层到输出层之间的权重矩阵U(大小为N×V)。

Skip-gram Model:

Skip-gram model是通过输入一个词去预测多个词的概率。输入层到隐藏层的原理和simple CBOW一样,不同的是隐藏层到输出层,损失函数变成了C个词损失函数的总和,权重矩阵W'还是共享的

相关推荐
weisian1511 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai1 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205311 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟1 小时前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战1 小时前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源
铁蛋AI编程实战1 小时前
最新版 Kimi K2.5 完整使用教程:从入门到实战(开源部署+API接入+多模态核心功能)
人工智能·开源
我有医保我先冲1 小时前
AI 时代 “任务完成“ 与 “专业能力“ 的区分:理论基础、行业影响与个人发展策略
人工智能·python·机器学习
Bamtone20251 小时前
PCB切片分析新方案:Bamtone MS90集成AI的智能测量解决方案
人工智能
Warren2Lynch1 小时前
2026年专业软件工程与企业架构的智能化演进
人工智能·架构·软件工程
_waylau2 小时前
【HarmonyOS NEXT+AI】问答08:仓颉编程语言是中文编程语言吗?
人工智能·华为·harmonyos·鸿蒙·仓颉编程语言·鸿蒙生态·鸿蒙6