【scikit-learn基础】--『数据加载』之样本生成器

除了内置的数据集,scikit-learn还提供了随机样本的生成器。通过这些生成器函数,可以生成具有特定特性和分布的随机数据集,以帮助进行机器学习算法的研究、测试和比较。

目前,scikit-learn库(v1.3.0版)中有20个不同的生成样本的函数。本篇重点介绍其中几个具有代表性的函数。

1. 分类聚类数据样本

分类和聚类是机器学习中使用频率最高的算法,创建各种相关的样本数据,能够帮助我们更好的试验算法。

1.1. make_blobs

这个函数通常用于可视化分类器的学习过程,它生成由聚类组成的非线性数据集。

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

X, Y = make_blobs(n_samples=1000, centers=5)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)

plt.show()

上面的示例生成了1000个点的数据,分为5个类别。

make_blobs的主要参数包括:

  • n_samples:生成的样本数。

  • n_features:每个样本的特征数。通常为2,表示我们生成的是二维数据。

  • centers:聚类的数量。即生成的样本会被分为多少类。

  • cluster_std:每个聚类的标准差。这决定了聚类的形状和大小。

  • shuffle:是否在生成数据后打乱样本。

  • random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。

1.2. make_classification

这是一个用于生成复杂二维数据的函数,通常用于可视化分类器的学习过程或者测试机器学习算法的性能。

import matplotlib.pyplot as plt
from sklearn.datasets import make_classification

X, Y = make_classification(n_samples=100, n_classes=4, n_clusters_per_class=1)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)

plt.show()

可以看出它生成的各类数据交织在一起,很难做线性的分类。

make_classification的主要参数包括:

  • n_samples:生成的样本数。

  • n_features:每个样本的特征数。这个参数决定了生成的数据集的维度。

  • n_informative:具有信息量的特征的数量。这个参数决定了特征集中的特征有多少是有助于分类的。

  • n_redundant:冗余特征的数量。这个参数决定了特征集中的特征有多少是重复或者没有信息的。

  • random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。

1.3. make_moons

和函数名称所表达的一样,它是一个用于生成形状类似于月牙的数据集的函数,通常用于可视化分类器的学习过程或者测试机器学习算法的性能。

from sklearn.datasets import make_moons

fig, ax = plt.subplots(1, 3)
fig.set_size_inches(9, 3)

X, Y = make_moons(noise=0.01, n_samples=1000)
ax[0].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[0].set_title("noise=0.01")

X, Y = make_moons(noise=0.05, n_samples=1000)
ax[1].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[1].set_title("noise=0.05")

X, Y = make_moons(noise=0.5, n_samples=1000)
ax[2].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[2].set_title("noise=0.5")

plt.show()

noise越小,数据的分类越明显。

make_moons的主要参数包括:

  • n_samples:生成的样本数。

  • noise:在数据集中添加的噪声的标准差。这个参数决定了月牙的噪声程度。

  • random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。

2. 回归数据样本

除了分类聚类回归 是机器学习的另一个重要方向。scikit-learn同样也提供了创建回归数据样本的函数。

from sklearn.datasets import make_regression

fig, ax = plt.subplots(1, 3)
fig.set_size_inches(9, 3)

X, y = make_regression(n_samples=100, n_features=1, noise=20)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("noise=20")

X, y = make_regression(n_samples=100, n_features=1, noise=10)
ax[1].scatter(X[:, 0], y, marker="o")
ax[1].set_title("noise=10")

X, y = make_regression(n_samples=100, n_features=1, noise=1)
ax[2].scatter(X[:, 0], y, marker="o")
ax[2].set_title("noise=1")

plt.show()

通过调节noise参数,可以创建不同精确度的回归数据。

make_regression的主要参数包括:

  • n_samples:生成的样本数。

  • n_features:每个样本的特征数。通常为一个较小的值,表示我们生成的是一维数据。

  • noise:噪音的大小。它为数据添加一些随机噪声,以使结果更接近现实情况。

3. 流形数据样本

所谓流形数据,就是S形 或者瑞士卷 那样旋转的数据,可以用来测试更复杂的分类模型的效果。比如下面的make_s_curve函数,就可以创建S形的数据:

from sklearn.datasets import make_s_curve

X, Y = make_s_curve(n_samples=2000)

fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
fig.set_size_inches((8, 8))
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=Y, s=60, alpha=0.8)
ax.view_init(azim=-60, elev=9)
plt.show()

4. 总结

本文介绍的生成样本数据的函数只是scikit-learn库中各种生成器的一部分,还有很多种其他的生成器函数可以生成更加复杂的样本数据。

所有的生成器函数请参考文档:++API Reference --- scikit-learn 1.3.2 documentation++

文章转载自:++wang_yb++

原文链接:https://www.cnblogs.com/wang_yb/p/17884401.html

相关推荐
D11_28 分钟前
Pandas缺失值处理
python·机器学习·数据分析·numpy·pandas
xuanyu222 小时前
Linux常用指令
linux·运维·人工智能
静心问道3 小时前
WGAN算法
深度学习·算法·机器学习
凡人的AI工具箱3 小时前
AI教你学Python 第11天 : 局部变量与全局变量
开发语言·人工智能·后端·python
晓星航3 小时前
Docker本地部署Chatbot Ollama搭建AI聊天机器人并实现远程交互
人工智能·docker·机器人
Kenneth風车3 小时前
【机器学习(五)】分类和回归任务-AdaBoost算法-Sentosa_DSML社区版
人工智能·算法·低代码·机器学习·数据分析
AI小白龙*3 小时前
大模型团队招人(校招):阿里巴巴智能信息,2025届春招来了!
人工智能·langchain·大模型·llm·transformer
鸽芷咕3 小时前
【Python报错已解决】python setup.py bdist_wheel did not run successfully.
开发语言·python·机器学习·bug
空指针异常Null_Point_Ex4 小时前
大模型LLM之SpringAI:Web+AI(一)
人工智能·chatgpt·nlp
Alluxio4 小时前
选择Alluxio来解决AI模型训练场景数据访问的五大理由
大数据·人工智能·分布式·ai·语言模型