【动手学深度学习】(十四)数据增广+微调

文章目录

一、数据增强

1.理论知识

  • 增加一个已有数据集,使得有更多的多样性
    • 在语言里面加入各种不同的背景噪音
    • 改变图片的颜色和形状

使用增强数据训练
翻转

  • 左右翻转
  • 上下翻转
    • 不总是可行

切割

  • 从图片中切割一块,然后变形到固定形状
    • 随机高宽比
    • 随机大小
    • 随机位置

颜色

  • 改变色调,饱和度,明亮度

总结

  • 数据增广通过变形数据来获取多样性从而使得模型泛化性能更好
  • 常见图片增广包括翻转、切割、变色

2.代码

1.读取图像

python 复制代码
%matplotlib inline
import torch
import torchvision
from torch import nn
from d2l import torch as d2l


d2l.set_figsize()
img = d2l.Image.open('../img/test.png')
d2l.plt.imshow(img);
python 复制代码
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)

水平翻转

python 复制代码
apply(img, torchvision.transforms.RandomHorizontalFlip())
# 在水平方向进行随机翻转

上下翻转图像

python 复制代码
# 上下翻转图像
apply(img, torchvision.transforms.RandomVerticalFlip())

随机裁剪

python 复制代码
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)

随机更改图片亮度

python 复制代码
apply(img, torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0, saturation=0, hue=0))

随机更改图片的色调,亮度(brightness)对比度(contrast)饱和度(saturation)色调(hue)

python 复制代码
# 随机更改图片的色调,亮度(brightness)对比度(contrast)饱和度(saturation)色调(hue)
color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)

结合多种图像增广方法

python 复制代码
augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(),
    color_aug, shape_aug])
apply(img, augs)
python 复制代码
all_images = torchvision.datasets.CIFAR10(
    train=True, root="../data", download=True)
d2l.show_images([
    all_images[i][0] for i in range(32)], 4, 8, scale=0.8);
python 复制代码
# 只使用最简单的随机左右翻转
train_augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor()])

test_augs = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()])
python 复制代码
# 定义一个辅助函数,以便于读取图像和应用图像增广
def load_cifar10(is_train, augs, batch_size):
    dataset = torchvision.datasets.CIFAR10(
        root="../data", train=is_train,
        transform=augs, download=True)
    dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=batch_size, shuffle=is_train,
        num_workers=0)
    return dataloader

二、微调

1.理论知识

标注一个数据集很贵
网络架构

  • 一个神经网络一般可以分成两块
    • 特征抽取将原始像素变成容易线性分割的特征
    • 线性分类器来做分类

微调

微调中的权重初始化

相关推荐
耘瞳科技2 小时前
喜讯 | 耘瞳科技视觉检测与测量装备荣膺“2024机器视觉创新产品TOP10”
人工智能·科技·视觉检测
__Benco4 小时前
OpenHarmony子系统开发 - DFX(一)
人工智能·harmonyos
小西几哦4 小时前
3D点云配准RPM-Net模型解读(附论文+源码)
人工智能·pytorch·3d
CareyWYR4 小时前
每周AI论文速递(250331-250404)
人工智能
码视野4 小时前
基于快速开发平台与智能手表的区域心电监测与AI预警系统(源码+论文+部署讲解等)
人工智能·智能手表·毕业论文·计算机论文·物联网论文
skywalk81635 小时前
OpenRouter开源的AI大模型路由工具,统一API调用
服务器·前端·人工智能·openrouter
ejinxian5 小时前
大模型应用初学指南
人工智能·大模型·向量数据库
秋95 小时前
使用人工智能大模型kimi,如何免费高效制作PPT?
人工智能·kimi·制作ppt
IT古董6 小时前
【漫话机器学习系列】181.没有免费的午餐定理(NFL)
人工智能·机器学习