物理信息神经网络(PINN)

什么是物理信息神经网络(PINN)?

宋家豪, 曹文博, and 张伟伟. "FD-PINN: 频域物理信息神经网络." 力学学报 55.5 (2023): 1195-1205.

物理信息神经网络(PINN)是一种将深度学习与物理建模相结合的方法,用于求解偏微分方程(PDE)和其他物理问题。PINN 的关键思想是将物理约束嵌入神经网络中,从而使网络能够学习物理系统的行为并满足物理方程。这种方法通常用于数据稀缺或者问题复杂的情况,为科学和工程领域提供了一种强大的数值求解工具。

(1)主要特点

深度学习结合物理建模: PINN 将深度神经网络与物理模型相结合,以更好地适应实际物理系统。

**数据稀缺性: **适用于数据稀缺或难以获取足够数据的问题。灵活性: 允许用户集成自定义的物理方程和约束,适用于各种科学和工程领域。

(2)使用方法

定义物理模型: 定义系统的物理方程和约束条件。构建神经网络: 构建包含物理信息的神经网络结构。训练网络: 通过优化算法训练网络,使其逼近物理方程并满足约束。求解问题: 使用训练好的网络进行物理问题的求解。

用来求解正反偏微分方程问题的一种新方法

PINN的损失函数通常由四个主要部分组成:数据匹配项、物理方程项、边界条件项和初始条件项。

(1)数据信息

(2)物理控制方程

(3)边界条件

(4)初始条件

以上四个项的组合构成了PINN的总体损失函数。通过最小化这个损失函数,神经网络能够学习逼近真实数据并同时满足物理方程、边界条件和初始条件。

参考:什么是物理信息神经网络(PINN)?

相关推荐
熊猫钓鱼>_>几秒前
PyTorch深度学习框架入门浅析
人工智能·pytorch·深度学习·cnn·nlp·动态规划·微分
Altair澳汰尔9 分钟前
成功案例丨仿真+AI技术为快消包装行业赋能提速:基于 AI 的轻量化设计节省数十亿美元
人工智能·ai·仿真·cae·消费品·hyperworks·轻量化设计
祝余Eleanor13 分钟前
Day 31 类的定义和方法
开发语言·人工智能·python·机器学习
背心2块钱包邮14 分钟前
第6节——微积分基本定理(Fundamental Theorem of Calculus,FTC)
人工智能·python·机器学习·matplotlib
也许是_14 分钟前
大模型应用技术之提示词高阶技巧
人工智能
ShiMetaPi27 分钟前
SAM(通用图像分割基础模型)丨基于BM1684X模型部署指南
人工智能·算法·ai·开源·bm1684x·算力盒子
自然语34 分钟前
数字生命的自由意志:终极答案
人工智能
数据智研34 分钟前
【数据分享】毛乌素沙地(毛乌素沙漠)空间矢量范围
大数据·人工智能·信息可视化·数据分析
专注数据的痴汉1 小时前
「数据获取」江门统计年鉴(1997-2024)
大数据·人工智能·信息可视化
小马爱打代码1 小时前
Spring AI:文生视频 - wanx2.1-i2v-plus
java·人工智能·spring