CNN、LeNet、AlexNet基于MNIST数据集进行训练和测试,并可视化对比结果

完成内容:

  1. 构建CNN并基于MNIST数据集进行训练和测试
  2. 构建LeNet并基于MNIST数据集进行训练和测试
  3. 构建AlexNet并基于MNIST数据集进行训练和测试
  4. 对比了不同网络在MNIST数据集上训练的效果

准备工作

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
from matplotlib import pyplot as plt
import pandas as pd
from math import pi

下载数据,加载data_loader

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'device:{device}')
batch_size = 256

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

# 加载数据(本步建议挂梯子)
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)

# 加载data_loader
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

results = []

定义CNN和LeNet通用的训练函数和测试函数

python 复制代码
def train(model, train_loader, criterion, optimizer, device):
    model.train()
    running_loss = 0.0
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    return running_loss / len(train_loader)


def test(model, test_loader, criterion, device):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    accuracy = correct / total
    return accuracy

构建CNN并基于MNIST数据集进行训练和测试

python 复制代码
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)
        )
        self.classifier = nn.Linear(16 * 14 * 14, 10)

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x
python 复制代码
# 展示网络内部结构
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in CNN().features:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
复制代码
网络结构:
Conv2d output shape: 	 torch.Size([1, 16, 28, 28])
ReLU output shape: 	 torch.Size([1, 16, 28, 28])
MaxPool2d output shape: 	 torch.Size([1, 16, 14, 14])
python 复制代码
# 初始化CNN,优化器,损失函数
model = CNN().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []
# 训练网络
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    train_loss = train(model, train_loader, criterion, optimizer, device)
    test_acc = test(model, test_loader, criterion, device)
    result.append(test_acc)
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}')
results.append(result)
results    

LeNet-MNIST

python 复制代码
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),  # (1, 6, 28, 28)
            nn.AvgPool2d(kernel_size=2, stride=2),  # (1, 6, 14, 14)
            nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),  # (1, 16, 10, 10)
            nn.AvgPool2d(kernel_size=2, stride=2),  # (1, 16, 5, 5)
            nn.Flatten(),  # (1, 400)
            nn.Linear(16 * 5 * 5, 120), nn.ReLU(),  # (1, 120)
            nn.Linear(120, 84), nn.ReLU(),  # (1, 84)
            nn.Linear(84, 10)  # (1, 10)
        )

    def forward(self, x):
        x = self.features(x)
        return x
python 复制代码
# 展示LeNet网络内部结构
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in LeNet().features:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
复制代码
# 网络结构:
Conv2d output shape: 	 torch.Size([1, 6, 28, 28])
ReLU output shape: 	 torch.Size([1, 6, 28, 28])
AvgPool2d output shape: 	 torch.Size([1, 6, 14, 14])
Conv2d output shape: 	 torch.Size([1, 16, 10, 10])
ReLU output shape: 	 torch.Size([1, 16, 10, 10])
AvgPool2d output shape: 	 torch.Size([1, 16, 5, 5])
Flatten output shape: 	 torch.Size([1, 400])
Linear output shape: 	 torch.Size([1, 120])
ReLU output shape: 	 torch.Size([1, 120])
Linear output shape: 	 torch.Size([1, 84])
ReLU output shape: 	 torch.Size([1, 84])
Linear output shape: 	 torch.Size([1, 10])
python 复制代码
# 初始化CNN,优化器,损失函数
model = LeNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []
# 训练模型
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    train_loss = train(model, train_loader, criterion, optimizer, device)
    test_acc = test(model, test_loader, criterion, device)
    result.append(test_acc)
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}')
results.append(result)
results

AlexNet-MNIST

python 复制代码
# 定义AlexNet
class AlexNet(nn.Module):
    def __init__(self, num_classes=10):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x
python 复制代码
# 重新加载数据
transform = transforms.Compose([
    transforms.Resize((227, 227)),
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)

batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
python 复制代码
# 初始化AlexNet、优化器、损失函数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
alexnet = AlexNet(num_classes=10).to(device)
optimizer = optim.Adam(alexnet.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []

# 训练
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    alexnet.train()
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = alexnet(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    #  测试
    alexnet.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = alexnet(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    accuracy = correct / total
    result.append(accuracy)
    print(f"Accuracy on test set: {accuracy * 100:.2f}%")
results.append(result)

结果分析

python 复制代码
# Set data
df = pd.DataFrame(results)
columns = ['epoch1', 'epoch2', 'epoch3', 'epoch4', 'epoch5']
df.columns = columns
df['Network'] = ['CNN','LeNet', 'AlexNet']
print(df)
# ------- PART 1: Create background

# number of variable
categories=list(df)[:-1]
N = len(categories)

# What will be the angle of each axis in the plot? (we divide the plot / number of variable)
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]

# Initialise the spider plot
ax = plt.subplot(111, polar=True)

# If you want the first axis to be on top:
ax.set_theta_offset(pi / 2)
ax.set_theta_direction(-1)

# Draw one axe per variable + add labels
plt.xticks(angles[:-1], categories)

# Draw ylabels
ax.set_rlabel_position(0)
plt.yticks([0.925,0.95,0.975], ["0.925","0.95","0.975"], color="grey", size=7)
plt.ylim(0.9,1)


# ------- PART 2: Add plots

# Plot each individual = each line of the data


# Ind1
values=df.loc[0].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="CNN")
ax.fill(angles, values, 'b', alpha=0.1)

# Ind2
values=df.loc[1].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="LeNet")
ax.fill(angles, values, 'r', alpha=0.1)

# Ind3
values=df.loc[2].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="AlexNet")
ax.fill(angles, values, 'g', alpha=0.1)

# Add legend
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))

# Show the graph
plt.show()
复制代码
   epoch1  epoch2  epoch3  epoch4  epoch5  Network
0  0.9629  0.9764  0.9818  0.9823  0.9826      CNN
1  0.9461  0.9706  0.9781  0.9810  0.9869    LeNet
2  0.9844  0.9865  0.9887  0.9855  0.9900  AlexNet

总体而言:

AlexNet效果更好,但Alex网络更复杂,计算开销更大;

CNN网络最简单,计算开销最小,效果也较好;

LeNet效果不如预期,按理来说LeNet网络更复杂,相较于CNN拟合效果应更好,但实际效果有偏差,怀疑是epoch较少,5个epoch不足以收敛

相关推荐
汗流浃背了吧,老弟!39 分钟前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习
软件聚导航1 小时前
从 AI 画马到马年红包封面,我还做了一个小程序
人工智能·chatgpt
啊森要自信1 小时前
CANN ops-cv:AI 硬件端视觉算法推理训练的算子性能调优与实战应用详解
人工智能·算法·cann
要加油哦~1 小时前
AI | 实践教程 - ScreenCoder | 多agents前端代码生成
前端·javascript·人工智能
玄同7651 小时前
从 0 到 1:用 Python 开发 MCP 工具,让 AI 智能体拥有 “超能力”
开发语言·人工智能·python·agent·ai编程·mcp·trae
新缸中之脑1 小时前
用RedisVL构建长期记忆
人工智能
J_Xiong01171 小时前
【Agents篇】07:Agent 的行动模块——工具使用与具身执行
人工智能·ai agent
SEO_juper1 小时前
13个不容错过的SEO技巧,让您的网站可见度飙升
人工智能·seo·数字营销
小瑞瑞acd1 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
CoderJia程序员甲2 小时前
GitHub 热榜项目 - 日榜(2026-02-06)
人工智能·ai·大模型·github·ai教程