CNN、LeNet、AlexNet基于MNIST数据集进行训练和测试,并可视化对比结果

完成内容:

  1. 构建CNN并基于MNIST数据集进行训练和测试
  2. 构建LeNet并基于MNIST数据集进行训练和测试
  3. 构建AlexNet并基于MNIST数据集进行训练和测试
  4. 对比了不同网络在MNIST数据集上训练的效果

准备工作

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
from matplotlib import pyplot as plt
import pandas as pd
from math import pi

下载数据,加载data_loader

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'device:{device}')
batch_size = 256

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

# 加载数据(本步建议挂梯子)
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)

# 加载data_loader
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

results = []

定义CNN和LeNet通用的训练函数和测试函数

python 复制代码
def train(model, train_loader, criterion, optimizer, device):
    model.train()
    running_loss = 0.0
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    return running_loss / len(train_loader)


def test(model, test_loader, criterion, device):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    accuracy = correct / total
    return accuracy

构建CNN并基于MNIST数据集进行训练和测试

python 复制代码
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)
        )
        self.classifier = nn.Linear(16 * 14 * 14, 10)

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x
python 复制代码
# 展示网络内部结构
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in CNN().features:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
网络结构:
Conv2d output shape: 	 torch.Size([1, 16, 28, 28])
ReLU output shape: 	 torch.Size([1, 16, 28, 28])
MaxPool2d output shape: 	 torch.Size([1, 16, 14, 14])
python 复制代码
# 初始化CNN,优化器,损失函数
model = CNN().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []
# 训练网络
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    train_loss = train(model, train_loader, criterion, optimizer, device)
    test_acc = test(model, test_loader, criterion, device)
    result.append(test_acc)
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}')
results.append(result)
results    

LeNet-MNIST

python 复制代码
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),  # (1, 6, 28, 28)
            nn.AvgPool2d(kernel_size=2, stride=2),  # (1, 6, 14, 14)
            nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),  # (1, 16, 10, 10)
            nn.AvgPool2d(kernel_size=2, stride=2),  # (1, 16, 5, 5)
            nn.Flatten(),  # (1, 400)
            nn.Linear(16 * 5 * 5, 120), nn.ReLU(),  # (1, 120)
            nn.Linear(120, 84), nn.ReLU(),  # (1, 84)
            nn.Linear(84, 10)  # (1, 10)
        )

    def forward(self, x):
        x = self.features(x)
        return x
python 复制代码
# 展示LeNet网络内部结构
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in LeNet().features:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
# 网络结构:
Conv2d output shape: 	 torch.Size([1, 6, 28, 28])
ReLU output shape: 	 torch.Size([1, 6, 28, 28])
AvgPool2d output shape: 	 torch.Size([1, 6, 14, 14])
Conv2d output shape: 	 torch.Size([1, 16, 10, 10])
ReLU output shape: 	 torch.Size([1, 16, 10, 10])
AvgPool2d output shape: 	 torch.Size([1, 16, 5, 5])
Flatten output shape: 	 torch.Size([1, 400])
Linear output shape: 	 torch.Size([1, 120])
ReLU output shape: 	 torch.Size([1, 120])
Linear output shape: 	 torch.Size([1, 84])
ReLU output shape: 	 torch.Size([1, 84])
Linear output shape: 	 torch.Size([1, 10])
python 复制代码
# 初始化CNN,优化器,损失函数
model = LeNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []
# 训练模型
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    train_loss = train(model, train_loader, criterion, optimizer, device)
    test_acc = test(model, test_loader, criterion, device)
    result.append(test_acc)
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}')
results.append(result)
results

AlexNet-MNIST

python 复制代码
# 定义AlexNet
class AlexNet(nn.Module):
    def __init__(self, num_classes=10):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x
python 复制代码
# 重新加载数据
transform = transforms.Compose([
    transforms.Resize((227, 227)),
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)

batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
python 复制代码
# 初始化AlexNet、优化器、损失函数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
alexnet = AlexNet(num_classes=10).to(device)
optimizer = optim.Adam(alexnet.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []

# 训练
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    alexnet.train()
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = alexnet(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    #  测试
    alexnet.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = alexnet(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    accuracy = correct / total
    result.append(accuracy)
    print(f"Accuracy on test set: {accuracy * 100:.2f}%")
results.append(result)

结果分析

python 复制代码
# Set data
df = pd.DataFrame(results)
columns = ['epoch1', 'epoch2', 'epoch3', 'epoch4', 'epoch5']
df.columns = columns
df['Network'] = ['CNN','LeNet', 'AlexNet']
print(df)
# ------- PART 1: Create background

# number of variable
categories=list(df)[:-1]
N = len(categories)

# What will be the angle of each axis in the plot? (we divide the plot / number of variable)
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]

# Initialise the spider plot
ax = plt.subplot(111, polar=True)

# If you want the first axis to be on top:
ax.set_theta_offset(pi / 2)
ax.set_theta_direction(-1)

# Draw one axe per variable + add labels
plt.xticks(angles[:-1], categories)

# Draw ylabels
ax.set_rlabel_position(0)
plt.yticks([0.925,0.95,0.975], ["0.925","0.95","0.975"], color="grey", size=7)
plt.ylim(0.9,1)


# ------- PART 2: Add plots

# Plot each individual = each line of the data


# Ind1
values=df.loc[0].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="CNN")
ax.fill(angles, values, 'b', alpha=0.1)

# Ind2
values=df.loc[1].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="LeNet")
ax.fill(angles, values, 'r', alpha=0.1)

# Ind3
values=df.loc[2].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="AlexNet")
ax.fill(angles, values, 'g', alpha=0.1)

# Add legend
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))

# Show the graph
plt.show()
   epoch1  epoch2  epoch3  epoch4  epoch5  Network
0  0.9629  0.9764  0.9818  0.9823  0.9826      CNN
1  0.9461  0.9706  0.9781  0.9810  0.9869    LeNet
2  0.9844  0.9865  0.9887  0.9855  0.9900  AlexNet

总体而言:

AlexNet效果更好,但Alex网络更复杂,计算开销更大;

CNN网络最简单,计算开销最小,效果也较好;

LeNet效果不如预期,按理来说LeNet网络更复杂,相较于CNN拟合效果应更好,但实际效果有偏差,怀疑是epoch较少,5个epoch不足以收敛

相关推荐
LZXCyrus13 分钟前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
我感觉。31 分钟前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr39 分钟前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive39 分钟前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦41 分钟前
生成式AI对产业的影响与冲击
人工智能·aigc
goomind1 小时前
YOLOv8实战木材缺陷识别
人工智能·yolo·目标检测·缺陷检测·pyqt5·木材缺陷识别
只怕自己不够好1 小时前
《OpenCV 图像基础操作全解析:从读取到像素处理与 ROI 应用》
人工智能·opencv·计算机视觉
幻风_huanfeng1 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理
嵌入式大圣1 小时前
嵌入式系统与OpenCV
人工智能·opencv·计算机视觉
ZOMI酱2 小时前
【AI系统】GPU 架构与 CUDA 关系
人工智能·架构