CNN、LeNet、AlexNet基于MNIST数据集进行训练和测试,并可视化对比结果

完成内容:

  1. 构建CNN并基于MNIST数据集进行训练和测试
  2. 构建LeNet并基于MNIST数据集进行训练和测试
  3. 构建AlexNet并基于MNIST数据集进行训练和测试
  4. 对比了不同网络在MNIST数据集上训练的效果

准备工作

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
from matplotlib import pyplot as plt
import pandas as pd
from math import pi

下载数据,加载data_loader

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'device:{device}')
batch_size = 256

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

# 加载数据(本步建议挂梯子)
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)

# 加载data_loader
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

results = []

定义CNN和LeNet通用的训练函数和测试函数

python 复制代码
def train(model, train_loader, criterion, optimizer, device):
    model.train()
    running_loss = 0.0
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    return running_loss / len(train_loader)


def test(model, test_loader, criterion, device):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    accuracy = correct / total
    return accuracy

构建CNN并基于MNIST数据集进行训练和测试

python 复制代码
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)
        )
        self.classifier = nn.Linear(16 * 14 * 14, 10)

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x
python 复制代码
# 展示网络内部结构
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in CNN().features:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
复制代码
网络结构:
Conv2d output shape: 	 torch.Size([1, 16, 28, 28])
ReLU output shape: 	 torch.Size([1, 16, 28, 28])
MaxPool2d output shape: 	 torch.Size([1, 16, 14, 14])
python 复制代码
# 初始化CNN,优化器,损失函数
model = CNN().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []
# 训练网络
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    train_loss = train(model, train_loader, criterion, optimizer, device)
    test_acc = test(model, test_loader, criterion, device)
    result.append(test_acc)
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}')
results.append(result)
results    

LeNet-MNIST

python 复制代码
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),  # (1, 6, 28, 28)
            nn.AvgPool2d(kernel_size=2, stride=2),  # (1, 6, 14, 14)
            nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),  # (1, 16, 10, 10)
            nn.AvgPool2d(kernel_size=2, stride=2),  # (1, 16, 5, 5)
            nn.Flatten(),  # (1, 400)
            nn.Linear(16 * 5 * 5, 120), nn.ReLU(),  # (1, 120)
            nn.Linear(120, 84), nn.ReLU(),  # (1, 84)
            nn.Linear(84, 10)  # (1, 10)
        )

    def forward(self, x):
        x = self.features(x)
        return x
python 复制代码
# 展示LeNet网络内部结构
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in LeNet().features:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
复制代码
# 网络结构:
Conv2d output shape: 	 torch.Size([1, 6, 28, 28])
ReLU output shape: 	 torch.Size([1, 6, 28, 28])
AvgPool2d output shape: 	 torch.Size([1, 6, 14, 14])
Conv2d output shape: 	 torch.Size([1, 16, 10, 10])
ReLU output shape: 	 torch.Size([1, 16, 10, 10])
AvgPool2d output shape: 	 torch.Size([1, 16, 5, 5])
Flatten output shape: 	 torch.Size([1, 400])
Linear output shape: 	 torch.Size([1, 120])
ReLU output shape: 	 torch.Size([1, 120])
Linear output shape: 	 torch.Size([1, 84])
ReLU output shape: 	 torch.Size([1, 84])
Linear output shape: 	 torch.Size([1, 10])
python 复制代码
# 初始化CNN,优化器,损失函数
model = LeNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []
# 训练模型
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    train_loss = train(model, train_loader, criterion, optimizer, device)
    test_acc = test(model, test_loader, criterion, device)
    result.append(test_acc)
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}')
results.append(result)
results

AlexNet-MNIST

python 复制代码
# 定义AlexNet
class AlexNet(nn.Module):
    def __init__(self, num_classes=10):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x
python 复制代码
# 重新加载数据
transform = transforms.Compose([
    transforms.Resize((227, 227)),
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)

batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
python 复制代码
# 初始化AlexNet、优化器、损失函数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
alexnet = AlexNet(num_classes=10).to(device)
optimizer = optim.Adam(alexnet.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []

# 训练
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    alexnet.train()
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = alexnet(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    #  测试
    alexnet.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = alexnet(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    accuracy = correct / total
    result.append(accuracy)
    print(f"Accuracy on test set: {accuracy * 100:.2f}%")
results.append(result)

结果分析

python 复制代码
# Set data
df = pd.DataFrame(results)
columns = ['epoch1', 'epoch2', 'epoch3', 'epoch4', 'epoch5']
df.columns = columns
df['Network'] = ['CNN','LeNet', 'AlexNet']
print(df)
# ------- PART 1: Create background

# number of variable
categories=list(df)[:-1]
N = len(categories)

# What will be the angle of each axis in the plot? (we divide the plot / number of variable)
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]

# Initialise the spider plot
ax = plt.subplot(111, polar=True)

# If you want the first axis to be on top:
ax.set_theta_offset(pi / 2)
ax.set_theta_direction(-1)

# Draw one axe per variable + add labels
plt.xticks(angles[:-1], categories)

# Draw ylabels
ax.set_rlabel_position(0)
plt.yticks([0.925,0.95,0.975], ["0.925","0.95","0.975"], color="grey", size=7)
plt.ylim(0.9,1)


# ------- PART 2: Add plots

# Plot each individual = each line of the data


# Ind1
values=df.loc[0].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="CNN")
ax.fill(angles, values, 'b', alpha=0.1)

# Ind2
values=df.loc[1].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="LeNet")
ax.fill(angles, values, 'r', alpha=0.1)

# Ind3
values=df.loc[2].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="AlexNet")
ax.fill(angles, values, 'g', alpha=0.1)

# Add legend
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))

# Show the graph
plt.show()
复制代码
   epoch1  epoch2  epoch3  epoch4  epoch5  Network
0  0.9629  0.9764  0.9818  0.9823  0.9826      CNN
1  0.9461  0.9706  0.9781  0.9810  0.9869    LeNet
2  0.9844  0.9865  0.9887  0.9855  0.9900  AlexNet

总体而言:

AlexNet效果更好,但Alex网络更复杂,计算开销更大;

CNN网络最简单,计算开销最小,效果也较好;

LeNet效果不如预期,按理来说LeNet网络更复杂,相较于CNN拟合效果应更好,但实际效果有偏差,怀疑是epoch较少,5个epoch不足以收敛

相关推荐
sponge'16 分钟前
opencv学习笔记9:基于CNN的mnist分类任务
深度学习·神经网络·cnn
用户51914958484532 分钟前
cURL变量管理中的缓冲区越界读取漏洞分析
人工智能·aigc
iFlow_AI40 分钟前
增强AI编程助手效能:使用开源Litho(deepwiki-rs)深度上下文赋能iFlow
人工智能·ai·ai编程·命令模式·iflow·iflow cli·心流ai助手
AI街潜水的八角44 分钟前
深度学习杂草分割系统1:数据集说明(含下载链接)
人工智能·深度学习·分类
TG:@yunlaoda360 云老大1 小时前
谷歌云发布 Document AI Workbench 最新功能:自定义文档拆分器实现复杂文档处理自动化
运维·人工智能·自动化·googlecloud
苍何1 小时前
国内也有 GPT 质感的 App 了,阿里做到了。
人工智能
美团技术团队1 小时前
美团 LongCat 团队发布全模态一站式评测基准UNO-Bench
人工智能
top_designer2 小时前
Firefly 样式参考:AI 驱动的 UI 资产“无限”生成
前端·人工智能·ui·aigc·ux·设计师
强盛小灵通专卖员2 小时前
Airsim仿真、无人机、无人车、Lidar深度相机应用研究!
人工智能·无人机·sci·深度强化学习·airsim·小论文
MatrixOrigin2 小时前
矩阵起源成功登陆深圳“专精特新”专板,加速 AI 数据智能新进程!
人工智能