Leetcode221 最大正方形

最大正方形

    • [题解1 DP](#题解1 DP)
    • [题解2 暴力(参考)](#题解2 暴力(参考))

在一个由 '0' 和 '1' 组成的二维矩阵内,找到 只包含 '1' 的最大正方形 ,并返回其面积。

提示:

  • m == matrix.length, n == matrix[i].length
  • 1 <= m, n <= 300
  • matrix[i][j] 为 '0' 或 '1'

题解1 DP

cpp 复制代码
class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
         int row = matrix.size(), col = matrix[0].size();
        // 定义:以 matrix[i][j] 为右下角元素的全为 1 正方形矩阵的最大边长为 dp[i][j]。
        vector<vector<int>> dp(row, vector<int>(col));
        // base case
        for(int i = 0; i < row; i++){
            dp[i][0] = matrix[i][0] - '0';
        }
        for(int i = 0; i < col; i ++){
            dp[0][i] = matrix[0][i] - '0';
        }
        // dp
        for(int i = 1; i < row; i++){
            for(int j = 1; j < col; j++){
                if(matrix[i][j] == '0') continue;
                // 木桶原理
                dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
            }
        }
        int len = 0;
        for(int i = 0; i < row; i++){
            for(int j = 0; j < col; j++){
                len = max(len, dp[i][j]);
            }
        }
        return len*len;
    }
};

题解2 暴力(参考)

cpp 复制代码
class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        if (matrix.size() == 0 || matrix[0].size() == 0) {
            return 0;
        }
        int maxSide = 0;
        int rows = matrix.size(), columns = matrix[0].size();
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < columns; j++) {
                if (matrix[i][j] == '1') {
                    // 遇到一个 1 作为正方形的左上角
                    maxSide = max(maxSide, 1);
                    // 计算可能的最大正方形边长
                    int currentMaxSide = min(rows - i, columns - j);
                    for (int k = 1; k < currentMaxSide; k++) {
                        // 判断新增的一行一列是否均为 1
                        bool flag = true;
                        if (matrix[i + k][j + k] == '0') {
                            break;
                        }
                        for (int m = 0; m < k; m++) {
                        	// 行 || 列 
                            if (matrix[i + k][j + m] == '0' || matrix[i + m][j + k] == '0') {
                                flag = false;
                                break;
                            }
                        }
                        if (flag) {
                            maxSide = max(maxSide, k + 1);
                        } else {
                            break;
                        }
                    }
                }
            }
        }
        int maxSquare = maxSide * maxSide;
        return maxSquare;
    }
};
相关推荐
he___H1 小时前
数据结构-移位
数据结构
电子_咸鱼2 小时前
LeetCode——Hot 100【电话号码的字母组合】
数据结构·算法·leetcode·链表·职场和发展·贪心算法·深度优先
仰泳的熊猫2 小时前
LeetCode:785. 判断二分图
数据结构·c++·算法·leetcode
rit84324992 小时前
基于MATLAB实现基于距离的离群点检测算法
人工智能·算法·matlab
my rainy days4 小时前
C++:友元
开发语言·c++·算法
haoly19894 小时前
数据结构和算法篇-归并排序的两个视角-迭代和递归
数据结构·算法·归并排序
微笑尅乐4 小时前
中点为根——力扣108.讲有序数组转换为二叉搜索树
算法·leetcode·职场和发展
小梁努力敲代码4 小时前
java数据结构--List的介绍
java·开发语言·数据结构
im_AMBER5 小时前
算法笔记 05
笔记·算法·哈希算法
夏鹏今天学习了吗5 小时前
【LeetCode热题100(46/100)】从前序与中序遍历序列构造二叉树
算法·leetcode·职场和发展