Leetcode221 最大正方形

最大正方形

    • [题解1 DP](#题解1 DP)
    • [题解2 暴力(参考)](#题解2 暴力(参考))

在一个由 '0' 和 '1' 组成的二维矩阵内,找到 只包含 '1' 的最大正方形 ,并返回其面积。

提示:

  • m == matrix.length, n == matrix[i].length
  • 1 <= m, n <= 300
  • matrix[i][j] 为 '0' 或 '1'

题解1 DP

cpp 复制代码
class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
         int row = matrix.size(), col = matrix[0].size();
        // 定义:以 matrix[i][j] 为右下角元素的全为 1 正方形矩阵的最大边长为 dp[i][j]。
        vector<vector<int>> dp(row, vector<int>(col));
        // base case
        for(int i = 0; i < row; i++){
            dp[i][0] = matrix[i][0] - '0';
        }
        for(int i = 0; i < col; i ++){
            dp[0][i] = matrix[0][i] - '0';
        }
        // dp
        for(int i = 1; i < row; i++){
            for(int j = 1; j < col; j++){
                if(matrix[i][j] == '0') continue;
                // 木桶原理
                dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
            }
        }
        int len = 0;
        for(int i = 0; i < row; i++){
            for(int j = 0; j < col; j++){
                len = max(len, dp[i][j]);
            }
        }
        return len*len;
    }
};

题解2 暴力(参考)

cpp 复制代码
class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        if (matrix.size() == 0 || matrix[0].size() == 0) {
            return 0;
        }
        int maxSide = 0;
        int rows = matrix.size(), columns = matrix[0].size();
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < columns; j++) {
                if (matrix[i][j] == '1') {
                    // 遇到一个 1 作为正方形的左上角
                    maxSide = max(maxSide, 1);
                    // 计算可能的最大正方形边长
                    int currentMaxSide = min(rows - i, columns - j);
                    for (int k = 1; k < currentMaxSide; k++) {
                        // 判断新增的一行一列是否均为 1
                        bool flag = true;
                        if (matrix[i + k][j + k] == '0') {
                            break;
                        }
                        for (int m = 0; m < k; m++) {
                        	// 行 || 列 
                            if (matrix[i + k][j + m] == '0' || matrix[i + m][j + k] == '0') {
                                flag = false;
                                break;
                            }
                        }
                        if (flag) {
                            maxSide = max(maxSide, k + 1);
                        } else {
                            break;
                        }
                    }
                }
            }
        }
        int maxSquare = maxSide * maxSide;
        return maxSquare;
    }
};
相关推荐
搂鱼11451410 分钟前
GJOI 11.10 题解
算法
爱睡觉的咋13 分钟前
openGauss × AI:打造一个能识图、能讲解、还能推荐的智慧博物馆导览师
算法
视觉AI37 分钟前
一帧就能“训练”的目标跟踪算法:通俗理解 KCF 的训练机制
人工智能·算法·目标跟踪
2301_795167201 小时前
玩转Rust高级应用 如何理解 Rust 实现免疫数据竞争的关键是Send 和 Sync 这两个 trait
开发语言·算法·rust
Blossom.1181 小时前
AI Agent记忆系统深度实现:从短期记忆到长期人格的演进
人工智能·python·深度学习·算法·决策树·机器学习·copilot
贩卖黄昏的熊1 小时前
数据结构示例代码
数据结构
Q741_1471 小时前
C++ 面试高频考点 链表 迭代 递归 力扣 25. K 个一组翻转链表 每日一题 题解
c++·算法·链表·面试·递归·迭代
_fairyland2 小时前
数据结构 力扣 练习
数据结构·考研·算法·leetcode
Neil今天也要学习2 小时前
永磁同步电机无速度算法--基于三阶LESO的反电动势观测器
算法·1024程序员节
机器学习之心2 小时前
NGO-VMD北方苍鹰算法优化变分模态分解+皮尔逊系数+小波阈值降噪+信号重构,MATLAB代码
算法·matlab·重构·信号重构·ngo-vmd·皮尔逊系数·小波阈值降噪