统一大语言模型和知识图谱:如何解决医学大模型-问诊不充分、检查不准确、诊断不完整、治疗方案不全面?

统一大语言模型和知识图谱:如何解决医学大模型问诊不充分、检查不准确、诊断不完整、治疗方案不全面?

医学大模型问题

问诊。偏离主诉和没抓住核心。

检查。大模型最大的问题就是它的模糊和宽泛,给出的检查方案经常有缺失和缺漏。

  • 解决方案:检查项目和诊断做关联,结合相应检查证据的类型和证据等级,给患者设计更加精准和高效的检查辅助方案

诊断。之前大模型只能给出一个方向性的诊断。在真实世界的临床应用实践上,最后要给出具体疾病的临床分型和分期。

  • 解决方案:从教科书和临床指南中提炼

治疗。大模型给出的治疗方案往往也是偏方向性的。

  • 解决方案:从教科书和临床指南中把治疗方案和治疗手段与诊断进行关联,以及在不同的疾病分期、分型下诊断方法和诊断的适用条件等综合考虑,辅助设计一个更加精准的治疗方案

医学大模型相当于一个模式识别系统,能迅速反应出 XX 特征 是 XX 疾病。

但是 ta 做不到完备的、全流程的医生治疗过程。

我们需要给 ta 引入结构化的完备能力。

从结构的角度出发,利用整体和部分的关系,有序地思考,正确决策,更有助于深度分析思考。

实现方式是,构建:

  • 指南上的知识点结构化(知识图谱1)
  • 临床上的解题思路结构化(知识图谱2)
  • 疾病上的全流程管理结构化(知识图谱3)
  • 错题上的结构化(知识图谱4)
  • 多模态的结构化(知识图谱5)

同时使用 5 种知识图谱,才能让医学大模型有完备的诊断能力:

  • 从家庭医生,到专科水平
  • 从模式识别,到完备的全流程诊断
  • 从不可控不稳定不可解释的黑盒,变成可控稳定可解释的
  • 能根据反馈,不断修订知识

这种结构化的完备能力,我们能通过 5 种专业的知识图谱实现。

如何使用知识图谱加强和补足专业能力?

论文地址:https://arxiv.org/pdf/2306.08302.pdf

大模型结构

现在的 大模型 可以分为:

  • 1)Decoder-only LLMs:仅采用解码器模块来生成目标输出文本。很多decoder-only的LLMs(如GPT4)通常可以根据少量示例或简单指令执行下游任务,而无需添加预测头或微调。模型的训练范式是预测句子中的下一个单词。
  • 2)Encoder-Decoder LLMs:用编码器和解码器模块。编码器模块负责将输入句子进行编码,解码器用于生成目标输出文本。编码器-解码器LLM(如ChatGLM)能够直接解决基于某些上下文生成句子的任务,例如总结、翻译和问答
  • 3)Encoder-only LLMs:仅用编码器对句子进行编码并理解单词之间的关系(如BERT),训练模式预测句子中的掩码词语,需要添加额外的预测头来解决下游任务,胜在自然语言理解任务(如文本分类、匹配)

知识图谱增强大模型的方法

当你问 熊是什么样的动物?:

  • 语言模型:熊是一种大型哺乳动物,只能给你一个笼统的答案。
  • 知识图谱 + 语言模型可以回答:"熊是一种大型哺乳动物,通常有厚重的毛皮,强壮的身体和大而强壮的爪子。它们喜欢生活在森林中,以植物、鱼和昆虫为食。"

知识图谱增强 分为三部分:

  • 增强的LLM预训练

    将KGs引入训练目标,设计知识导向的训练目标

    将KGs整合到LLM输入中

    将KGs纳入到额外的融合模块中,设计单独处理KGs的模块。

  • 增强的LLM推理

  • 增强的LLM可解释性

正在更新...

相关推荐
Q741_14717 分钟前
C++ 位运算 高频面试考点 力扣137. 只出现一次的数字 II 题解 每日一题
c++·算法·leetcode·面试·位运算
天特肿瘤电场研究所27 分钟前
专业的肿瘤电场疗法厂家
算法
DASXSDW1 小时前
NET性能优化-使用RecyclableBuffer取代RecyclableMemoryStream
java·算法·性能优化
kfepiza1 小时前
CAS (Compare and Swap) 笔记251007
java·算法
墨染点香1 小时前
LeetCode 刷题【103. 二叉树的锯齿形层序遍历、104. 二叉树的最大深度、105. 从前序与中序遍历序列构造二叉树】
算法·leetcode·职场和发展
啊我不会诶2 小时前
23ICPC澳门站补题
算法·深度优先·图论
Brookty2 小时前
【算法】二分查找(一)朴素二分
java·学习·算法·leetcode·二分查找
黑色的山岗在沉睡4 小时前
LeetCode 2761. 和等于目标值的质数对
算法·leetcode·职场和发展
bawangtianzun4 小时前
重链剖分 学习记录
数据结构·c++·学习·算法
T1an-18 小时前
力扣70.爬楼梯
算法·leetcode·职场和发展