关于pytorch中的dim的理解

今天碰到一个代码看起来很简单,但是细究原理又感觉好像不太通不太对劲,就是多维tensor数据的操作,比如:y.sum(dim=2),乍一看很简单数据相加操作,但是仔细一想,这里在第3维度的数据到底是横向相加还是纵向相加,带着疑问实验几次就明白了。

首先给个完整的例子:

python 复制代码
import  torch

y = torch.tensor([
     [
       [1, 2, 3],
       [4, 5, 6]
     ],
     [
       [1, 2, 3],
       [4, 5, 6]
     ],
     [
       [1, 2, 3],
       [4, 5, 6]
     ]
   ])

print(y.sum(dim=2))

这里的y.shape = (3, 2, 3),三个维度的数据,所以dim可以是0~2也可以是-1~-3。我们每个维度都进行操作一遍就清楚了。

  • 当dim=0时,相当于有3个二维的向量进行相加,结果还是一个二维向量(对应位置相加):

    y.shape = (3, 2, 3) ---> y.shape = (2, 3)
  • 当dim=1时,相当于有2个一维的向量进行相加×3,结果是1个一维向量×3则还是一个二维向量:

    y.shape = (3, 2, 3) ---> y.shape = (3, 3)
  • 当dim=2时,相当于有3个数值进行相加×2×3,结果两个值组成一维向量,三个一维向量组成二维向量:

    y.shape = (3, 2, 3) ---> y.shape = (3, 2)

其他的数据操作也是这样类似的思想。

总结:从中可以看出只要对一个n维度的数据的其中一维进行操作的话,得到的结果会是n-1维的向量,shape则是去掉那一维的个数。

相关推荐
Python私教几秒前
Django全栈班v1.04 Python基础语法 20250912 上午
后端·python·django
言之。2 分钟前
Django REST框架:ModelViewSet全面解析
数据库·python·django
聚集的流星14 分钟前
大模型提示词工程调优
人工智能
Pocker_Spades_A28 分钟前
Python快速入门专业版(二十六):Python函数基础:定义、调用与返回值(Hello函数案例)
开发语言·python
东方佑43 分钟前
从音频到Token:构建原神角色语音识别模型的完整实践
人工智能·音视频·语音识别
周周记笔记1 小时前
学习笔记:Python的起源
开发语言·python
dlraba8021 小时前
基于 OpenCV 与 SIFT 算法的指纹识别系统实现:从匹配到可视化
人工智能·opencv·计算机视觉
shizidushu1 小时前
Hugging Face NLP课程学习记录 - 3. 微调一个预训练模型
人工智能·学习·自然语言处理·微调·huggingface
格林威1 小时前
机器视觉在半导体制造中有哪些检测应用
人工智能·数码相机·yolo·计算机视觉·视觉检测·制造·相机
魂尾ac1 小时前
Django + Vue3 前后端分离技术实现自动化测试平台从零到有系列 <第一章> 之 注册登录实现
后端·python·django·vue