深度学习环境配置------windows系统(GPU)------Pytorch

深度学习环境配置------windows系统(GPU)------Pytorch

准备工作

明确操作系统

要想配置深度学习环境首先应确定自己电脑的系统,文章以下都以win10为例。请大家注意!

明确显卡系列

大家注意检查自己电脑的显卡系列,具体方式可以参考以下:

  1. 任务栏右键选择任务管理器。

  2. 打开后选择"性能",同时选择最下方的GPU。即可看到自己电脑的GPU型号

    注意:以30系列显卡为分界,本文只适应30系列前的显卡!!

CUDA和Cudnn下载与安装

由于将会使用torch1.2.0版本,因此需要下载cuda10.0以及cuda10.0对应的cudnn7.4.1。

1.下载

cuda10.0官网的下载地址是:cuda10.0

cudnn的下载地址是:cudnn进去后找到7.4.1.5。

2.安装

对于cuda:

双击exe文件安装即可。可以安装到C盘。

对于cudnn:

安装完cuda后在C盘找到以下位置:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0

然后把Cudnn压缩包进行解压。复制到上述目录下即可。

环境配置过程

1.安装Anacoda

进入Anaconda的官网:官网

直接下载对应安装包(64位)就可以。

按照步骤进行安装即可,可以不装在C盘。

2.配置环境

1)创建一个新的虚拟环境

开始菜单找到Anacoda,打开命令窗口。如下:

使用以下命令创建一个新的虚拟环境:

复制代码
//创建一个名为pytorch的环境,该环境的python版本为3.6。
conda create --n pytorch python=3.6

使用以下命令进入虚拟环境:

复制代码
//激活pytorch环境
conda activate pytorch

此时的窗口应该为:

2)pytorch相关库的安装

可以使用以下指令安装torch和torchvision。

复制代码
# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

其他库:

复制代码
scipy==1.2.1
numpy==1.17.0
matplotlib==3.1.2
opencv_python==4.1.2.30
torch==1.2.0
torchvision==0.4.0
tqdm==4.60.0
Pillow==8.2.0
h5py==2.10.0
jupyter notebook

可以将以上内容放入txt文件中,使用以下命令安装:

复制代码
pip install -r requirements.txt

如果安装缓慢,可以参考这个方法:安装python库的方法

2.安装VScode

1)下载VScode

进入VScode官网下载:官网,下载windows版就可以。

2)安装VScode

按照步骤安装即可进入主页。

至此,相关软件和环境的配置与安装准备工作已完成!!!感谢三连!!!

相关推荐
Uzuki4 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
niandb5 小时前
The Rust Programming Language 学习 (九)
windows·rust
byxdaz7 小时前
PyTorch中Linear全连接层
pytorch
Start_Present7 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
virelin_Y.lin8 小时前
系统与网络安全------Windows系统安全(1)
windows·安全·web安全·系统安全
snowfoootball9 小时前
基于 Ollama DeepSeek、Dify RAG 和 Fay 框架的高考咨询 AI 交互系统项目方案
前端·人工智能·后端·python·深度学习·高考
odoo中国10 小时前
深度学习 Deep Learning 第15章 表示学习
人工智能·深度学习·学习·表示学习
电星托马斯10 小时前
C++中顺序容器vector、list和deque的使用方法
linux·c语言·c++·windows·笔记·学习·程序人生
橙色小博10 小时前
长短期记忆神经网络(LSTM)基础学习与实例:预测序列的未来
人工智能·python·深度学习·神经网络·lstm
船长@Quant10 小时前
PyTorch量化进阶教程:第六章 模型部署与生产化
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib