深度学习环境配置------windows系统(GPU)------Pytorch

深度学习环境配置------windows系统(GPU)------Pytorch

准备工作

明确操作系统

要想配置深度学习环境首先应确定自己电脑的系统,文章以下都以win10为例。请大家注意!

明确显卡系列

大家注意检查自己电脑的显卡系列,具体方式可以参考以下:

  1. 任务栏右键选择任务管理器。

  2. 打开后选择"性能",同时选择最下方的GPU。即可看到自己电脑的GPU型号

    注意:以30系列显卡为分界,本文只适应30系列前的显卡!!

CUDA和Cudnn下载与安装

由于将会使用torch1.2.0版本,因此需要下载cuda10.0以及cuda10.0对应的cudnn7.4.1。

1.下载

cuda10.0官网的下载地址是:cuda10.0

cudnn的下载地址是:cudnn进去后找到7.4.1.5。

2.安装

对于cuda:

双击exe文件安装即可。可以安装到C盘。

对于cudnn:

安装完cuda后在C盘找到以下位置:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0

然后把Cudnn压缩包进行解压。复制到上述目录下即可。

环境配置过程

1.安装Anacoda

进入Anaconda的官网:官网

直接下载对应安装包(64位)就可以。

按照步骤进行安装即可,可以不装在C盘。

2.配置环境

1)创建一个新的虚拟环境

开始菜单找到Anacoda,打开命令窗口。如下:

使用以下命令创建一个新的虚拟环境:

复制代码
//创建一个名为pytorch的环境,该环境的python版本为3.6。
conda create --n pytorch python=3.6

使用以下命令进入虚拟环境:

复制代码
//激活pytorch环境
conda activate pytorch

此时的窗口应该为:

2)pytorch相关库的安装

可以使用以下指令安装torch和torchvision。

复制代码
# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

其他库:

复制代码
scipy==1.2.1
numpy==1.17.0
matplotlib==3.1.2
opencv_python==4.1.2.30
torch==1.2.0
torchvision==0.4.0
tqdm==4.60.0
Pillow==8.2.0
h5py==2.10.0
jupyter notebook

可以将以上内容放入txt文件中,使用以下命令安装:

复制代码
pip install -r requirements.txt

如果安装缓慢,可以参考这个方法:安装python库的方法

2.安装VScode

1)下载VScode

进入VScode官网下载:官网,下载windows版就可以。

2)安装VScode

按照步骤安装即可进入主页。

至此,相关软件和环境的配置与安装准备工作已完成!!!感谢三连!!!

相关推荐
最晚的py8 分钟前
深度学习简介
深度学习
- 总有一天你会出现在我身边14 分钟前
windows版中间件启动
windows·中间件
baby_hua24 分钟前
20251011_Pytorch深度学习(快速预览)
人工智能·pytorch·深度学习
natide25 分钟前
词汇/表达差异-1-编辑距离-莱文斯坦距离-Levenshtein
人工智能·深度学习·自然语言处理·知识图谱
cheniie31 分钟前
Windows下c/c++使用pgsql
c++·windows·postgresql
小白狮ww33 分钟前
abaqus 算例教程:考虑动水压力的 koyna 地震非线性动力响应分析
人工智能·深度学习·机器学习·abaqus·材料科学·工程模拟·混凝土抗震分析
小白狮ww40 分钟前
当 OCR 模型开始「理解整页文档」:HunyuanOCR 的端到端之路
人工智能·深度学习·机器学习·ocr·文字识别·文档处理·腾讯混元
2401_841495641 小时前
【自然语言处理】共生与引领:自然语言处理与人工智能的深度绑定与协同演进
人工智能·深度学习·自然语言处理·多模态·通用智能·规则驱动·认知智能
恶猫1 小时前
EditPlus v6.1 Build 780 烈火汉化版
windows·编辑器·文本编辑器·editplus
盼小辉丶1 小时前
PyTorch实战(17)——神经风格迁移
pytorch·深度学习·风格迁移