深度学习环境配置------windows系统(GPU)------Pytorch

深度学习环境配置------windows系统(GPU)------Pytorch

准备工作

明确操作系统

要想配置深度学习环境首先应确定自己电脑的系统,文章以下都以win10为例。请大家注意!

明确显卡系列

大家注意检查自己电脑的显卡系列,具体方式可以参考以下:

  1. 任务栏右键选择任务管理器。

  2. 打开后选择"性能",同时选择最下方的GPU。即可看到自己电脑的GPU型号

    注意:以30系列显卡为分界,本文只适应30系列前的显卡!!

CUDA和Cudnn下载与安装

由于将会使用torch1.2.0版本,因此需要下载cuda10.0以及cuda10.0对应的cudnn7.4.1。

1.下载

cuda10.0官网的下载地址是:cuda10.0

cudnn的下载地址是:cudnn进去后找到7.4.1.5。

2.安装

对于cuda:

双击exe文件安装即可。可以安装到C盘。

对于cudnn:

安装完cuda后在C盘找到以下位置:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0

然后把Cudnn压缩包进行解压。复制到上述目录下即可。

环境配置过程

1.安装Anacoda

进入Anaconda的官网:官网

直接下载对应安装包(64位)就可以。

按照步骤进行安装即可,可以不装在C盘。

2.配置环境

1)创建一个新的虚拟环境

开始菜单找到Anacoda,打开命令窗口。如下:

使用以下命令创建一个新的虚拟环境:

复制代码
//创建一个名为pytorch的环境,该环境的python版本为3.6。
conda create --n pytorch python=3.6

使用以下命令进入虚拟环境:

复制代码
//激活pytorch环境
conda activate pytorch

此时的窗口应该为:

2)pytorch相关库的安装

可以使用以下指令安装torch和torchvision。

复制代码
# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

其他库:

复制代码
scipy==1.2.1
numpy==1.17.0
matplotlib==3.1.2
opencv_python==4.1.2.30
torch==1.2.0
torchvision==0.4.0
tqdm==4.60.0
Pillow==8.2.0
h5py==2.10.0
jupyter notebook

可以将以上内容放入txt文件中,使用以下命令安装:

复制代码
pip install -r requirements.txt

如果安装缓慢,可以参考这个方法:安装python库的方法

2.安装VScode

1)下载VScode

进入VScode官网下载:官网,下载windows版就可以。

2)安装VScode

按照步骤安装即可进入主页。

至此,相关软件和环境的配置与安装准备工作已完成!!!感谢三连!!!

相关推荐
java1234_小锋5 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构介绍
深度学习·语言模型·llm·transformer
yLDeveloper5 小时前
一只菜鸟学深度学习的日记:填充 & 步幅 & 下采样
深度学习·dive into deep learning
为爱停留6 小时前
Spring AI实现RAG(检索增强生成)详解与实践
人工智能·深度学习·spring
噜~噜~噜~6 小时前
显式与隐式欧拉法(Explicit Euler and Implicit Euler)的个人理解
深度学习·显式欧拉法·隐式欧拉法·动力学系统
Jurio.7 小时前
Python Ray 分布式计算应用
linux·开发语言·python·深度学习·机器学习
diegoXie8 小时前
【Python】 中的 * 与 **:Packing 与 Unpacking
开发语言·windows·python
_codemonster8 小时前
深度学习实战(基于pytroch)系列(四十八)AdaGrad优化算法
人工智能·深度学习·算法
AI即插即用8 小时前
即插即用系列 | Attention GhostUNet++:基于多维注意力和 Ghost 模块的高效 CT 图像脂肪与肝脏分割网络
网络·图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
哥布林学者9 小时前
吴恩达深度学习课程四:计算机视觉 第一周:卷积基础知识(二)卷积参数
深度学习·ai