020 OpenCV 轮廓、外接圆、外接矩形

一、环境

本文使用环境为:

  • Windows10
  • Python 3.9.17
  • opencv-python 4.8.0.74

二、原理

2.1 函数接口

OpenCV中的findContours函数用于检测图像中的轮廓。轮廓是图像中连续的点集,它们通常表示物体的边缘或形状。在计算机视觉和图像处理中,轮廓分析是一种常见的任务,例如目标检测、形状识别等。

findContours函数的基本语法如下:

python 复制代码
contours, hierarchy = cv.findContours(image, mode, method[, contours[, hierarchy[, offset ]]])

参数说明:

  • image:输入图像,通常是一个二值图像。
  • mode:轮廓检索模式。这个参数决定了函数如何返回轮廓。常见的模式有:
    • cv2.RETR_EXTERNAL:只检索最外层的轮廓。
    • cv2.RETR_LIST:检索所有轮廓并将其保存到列表中。
    • cv2.RETR_CCOMP:检索所有轮廓,并将它们组织到两个不同的层次结构中(例如,外部和内部)。
    • cv2.RETR_TREE:检索所有轮廓,并将它们组织到一个层次结构中。
  • method:轮廓的近似方法。常见的有:
    • cv2.CHAIN_APPROX_SIMPLE:压缩水平、垂直和对角分段。
    • cv2.CHAIN_APPROX_NONE:存储所有的段(4点)。
    • cv2.CHAIN_APPROX_SIMPLEcv2.CHAIN_APPROX_DP:使用动态规划压缩轮廓。
  • contours(可选):输出参数,返回找到的轮廓。
  • hierarchy(可选):输出参数,返回有关轮廓之间关系的信息。
  • offset(可选):偏移量,用于调整轮廓的位置。

返回值:

  • 如果指定了 contours 参数,则返回找到的轮廓。
  • 如果指定了 hierarchy 参数,则返回有关轮廓之间关系的信息。

2.2 原理理解

在OpenCV库中,函数cv2.findContours()是一个用于查找图像中物体轮廓的重要工具。该函数的主要参数包括:输入图像、轮廓检索模式和近似方法等。

首先,输入的图像通常是二值化的单通道图像,其中黑色代表背景,白色代表目标物体。这样的图像通常通过Canny或拉普拉斯等边缘检测算子进行处理得到。

其次,轮廓检索模式决定了如何处理图像中的轮廓。例如,cv2.RETR_EXTERNAL只检测外轮廓;cv2.RETR_LIST检测的轮廓不建立等级关系;cv2.RETR_CCOMP建立两个等级的轮廓,上一层为外边界,内层为内孔的边界;而cv2.RETR_TREE则建立一个等级树结构的轮廓。

最后,近似方法决定了如何简化轮廓。例如,cv2.CHAIN_APPROX_SIMPLE就表示用尽可能少的像素点表示轮廓。

函数的返回值包括两个部分:contours和hierarchy。其中,contours是一个包含所有检测到的轮廓信息的数组,每个轮廓又是由若干个点所构成的;而hierarchy则是一个包含了各轮廓之间的层次关系的数组。

三、完整代码

python 复制代码
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
import random as rng

rng.seed(12345)

def thresh_callback(val):
    threshold = val
    # 使用canny检测边缘
    canny_output = cv.Canny(src_gray, threshold, threshold * 2)
    # 查找轮廓
    contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
    

    # 这里在分配空间
    contours_poly = [None]*len(contours)
    boundRect = [None]*len(contours)
    centers = [None]*len(contours)
    radius = [None]*len(contours) 

    # 依据canny检测出来的边缘,下面查找边缘的轮廓、边缘的外接圆、外接矩形
    for i, c in enumerate(contours):
        contours_poly[i] = cv.approxPolyDP(c, 3, True) # 轮廓
        boundRect[i] = cv.boundingRect(contours_poly[i]) # 外接矩形
        centers[i], radius[i] = cv.minEnclosingCircle(contours_poly[i]) # 外接圆
   
    # 搞一张黑色的图,用于绘制
    drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8)
    
    # 绘制轮廓、矩形、圆
    for i in range(len(contours)):
        color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
        cv.drawContours(drawing, contours_poly, i, color)
        cv.rectangle(drawing, (int(boundRect[i][0]), int(boundRect[i][1])), \
          (int(boundRect[i][0]+boundRect[i][2]), int(boundRect[i][1]+boundRect[i][3])), color, 2)
        cv.circle(drawing, (int(centers[i][0]), int(centers[i][1])), int(radius[i]), color, 2) 
    cv.imshow('Contours', drawing)

parser = argparse.ArgumentParser(description='Code for Creating Bounding boxes and circles for contours tutorial.')
parser.add_argument('--input', help='Path to input image.', default='data/stuff.jpg')
args = parser.parse_args()
# 读取图片
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
    print('Could not open or find the image:', args.input)
    exit(0)

# 彩色图转灰度图
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# 图片平滑
src_gray = cv.blur(src_gray, (3,3))

# 显示原彩色图
source_window = 'Source'
cv.namedWindow(source_window)
cv.imshow(source_window, src)

# 创建滑条,控制canny查找边缘的阈值
max_thresh = 255
thresh = 100 # canny初始化阈值
cv.createTrackbar('Canny thresh:', source_window, thresh, max_thresh, thresh_callback)
thresh_callback(thresh)

cv.waitKey()
相关推荐
阿勉要睡觉1 分钟前
计算机图形学知识点汇总
计算机视觉
FL16238631293 分钟前
python版本的Selenium的下载及chrome环境搭建和简单使用
chrome·python·selenium
巫师不要去魔法部乱说6 分钟前
PyCharm专项训练5 最短路径算法
python·算法·pycharm
Chloe.Zz13 分钟前
Python基础知识回顾
python
IT古董13 分钟前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生16 分钟前
机器学习连载
人工智能·机器学习
骑个小蜗牛17 分钟前
Python 标准库:random——随机数
python
Trouvaille ~27 分钟前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
dundunmm35 分钟前
论文阅读:Deep Fusion Clustering Network With Reliable Structure Preservation
论文阅读·人工智能·数据挖掘·聚类·深度聚类·图聚类
szxinmai主板定制专家44 分钟前
【国产NI替代】基于FPGA的4通道电压 250M采样终端边缘计算采集板卡,主控支持龙芯/飞腾
人工智能·边缘计算