张量结构操作

torch.transpose可以交换张量的维度,torch.transpose常用于图片存储格式的变换上。

#在第0维插入长度为1的一个维度

d = torch.unsqueeze(s,axis=0)

改成 (3,6)形状的张量

b = a.view([3,6]) #torch.reshape(a,[3,6])

print(b.shape)

print(b)

改回成 [1,3,3,2] 形状的张量

c = torch.reshape(b,[1,3,3,2]) # b.view([1,3,3,2])

print(c)

如果张量在某个维度上只有一个元素,利用torch.squeeze可以消除这个维度。

torch.unsqueeze的作用和torch.squeeze的作用相反。

可以用torch.cat方法和torch.stack方法将多个张量合并,可以用torch.split方法把一个张量分割成多个张量。

torch.cat和torch.stack有略微的区别,torch.cat是连接,不会增加维度,而torch.stack是堆叠,会增加维度。 (这个是把多张图片张量合并成一个batch用的张量操作方法)

相关推荐
AKAMAI5 小时前
Akamai Cloud客户案例 | Avesha 在 Akamai 云上扩展 Kubernetes 解决方案
人工智能·云计算
wasp5206 小时前
AgentScope Java 核心架构深度解析
java·开发语言·人工智能·架构·agentscope
智算菩萨6 小时前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
free-elcmacom6 小时前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
liliangcsdn6 小时前
python模拟beam search优化LLM输出过程
人工智能·python
算法与编程之美6 小时前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
Deepoch6 小时前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头4156 小时前
SGLang学习笔记
人工智能·笔记·学习
飞哥数智坊7 小时前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪7 小时前
AI建站推荐
大数据·人工智能·python