张量结构操作

torch.transpose可以交换张量的维度,torch.transpose常用于图片存储格式的变换上。

#在第0维插入长度为1的一个维度

d = torch.unsqueeze(s,axis=0)

改成 (3,6)形状的张量

b = a.view([3,6]) #torch.reshape(a,[3,6])

print(b.shape)

print(b)

改回成 [1,3,3,2] 形状的张量

c = torch.reshape(b,[1,3,3,2]) # b.view([1,3,3,2])

print(c)

如果张量在某个维度上只有一个元素,利用torch.squeeze可以消除这个维度。

torch.unsqueeze的作用和torch.squeeze的作用相反。

可以用torch.cat方法和torch.stack方法将多个张量合并,可以用torch.split方法把一个张量分割成多个张量。

torch.cat和torch.stack有略微的区别,torch.cat是连接,不会增加维度,而torch.stack是堆叠,会增加维度。 (这个是把多张图片张量合并成一个batch用的张量操作方法)

相关推荐
灯火不休时4 分钟前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
mit6.82428 分钟前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub40 分钟前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
番石榴AI1 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习
国产化创客1 小时前
基于AI大模型智能硬件--小智AI项目PC端部署测试
人工智能
海边夕阳20061 小时前
【每天一个AI小知识】:什么是零样本学习?
人工智能·经验分享·学习
平凡而伟大(心之所向)1 小时前
云架构设计与实践:从基础到未来趋势
人工智能·阿里云·系统架构·安全架构
数据与后端架构提升之路1 小时前
构建一个可进化的自动驾驶数据管道:规则引擎与异常检测的集成
人工智能·机器学习·自动驾驶
xier_ran2 小时前
Transformer:Decoder 中,Cross-Attention 所用的 K(Key)和 V(Value)矩阵,是如何从 Encoder 得到的
深度学习·矩阵·transformer