MapReduce模拟统计每日车流量-解决方案

MapReduce模拟统计每日车流量-解决方案

为了模拟每日的车流量,可以使用MapReduce模型来处理数据。具体步骤如下:

1.Map阶段:将原始数据分割成若干个小块,每个小块由一个Map任务处理。Map任务将小块中的每个数据项映射成为一个键值对,其中键为时间戳,值为车流量。
2.Shuffle阶段:将Map任务输出的键值对按照键进行排序,并将相同键的值合并在一起,形成一个新的键值对序列。
3.Recduce阶段:将Shuffle阶段输出的键值对按照键进行分组,每个Reduce任务处理一组数据。Reduce任务将组内的所有值相加,得到该时间戳下的总车辆。

使用Python编写一个简单的案例,用具模拟每日的车流量:

python 复制代码
# Map函数
def map_func(line):
    # 解析原始数据,获取时间戳和车流量
    timestamp, traffic = line.split(',')
    return (timestamp, int(traffic))

# Reduce函数
def reduce_func(key, values):
    # 计算该时间戳下的总车流量
    return (key, sum(values))

# 主函数
if __name__ == '__main__':
    # 读取原始数据
    with open('traffic.txt', 'r') as f:
        lines = f.readlines()

    # 执行MapReduce操作
    mapped = map(map_func, lines)
    shuffled = sorted(mapped)
    grouped = itertools.groupby(shuffled, lambda x: x[0])
    reduced = [reduce_func(key, [v[1] for v in values]) for key, values in grouped]

    # 输出结果
    for item in reduced:
        print(item)

其中,原始数据存储在traffic.txt文件中,每行格式为"时间戳,车流量"。执行以上代码后,将输出每个时间戳下的总车流量。

使用Java语言,编写一个MapReduce模拟统计每日车流量:

java 复制代码
import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class TrafficCount {

    public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {

        private Text keyText = new Text();
        private IntWritable valueInt = new IntWritable();

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String line = value.toString();
            String[] fields = line.split(",");
            String date = fields[0];
            int traffic = Integer.parseInt(fields[1]);
            keyText.set(date);
            valueInt.set(traffic);
            context.write(keyText, valueInt);
        }
    }

    public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

        private IntWritable result = new IntWritable();

        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable value : values) {
                sum += value.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }
相关推荐
MicroTech20253 分钟前
微算法科技(NASDAQ: MLGO)采用量子相位估计(QPE)方法,增强量子神经网络训练
大数据·算法·量子计算
b***251110 分钟前
深圳比斯特|多维度分选:圆柱电池品质管控的自动化解决方案
大数据·人工智能
幻灵尔依12 分钟前
前端编码统一规范
javascript·vue.js·代码规范
欢脱的小猴子12 分钟前
VUE3加载cesium,导入czml的星座后页面卡死BUG 修复
前端·vue.js·bug
高级测试工程师欧阳14 分钟前
CSS 基础概念
前端·css·css3
前端小巷子15 分钟前
JS 实现图片瀑布流布局
前端·javascript·面试
Juchecar22 分钟前
AI教你常识之 npm / pnpm / package.json
前端
薛定谔的猫229 分钟前
前端工程化系列(一):编码规范相关
前端·代码规范·前端工程化
Flink_China31 分钟前
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
大数据·flink
ZKshun31 分钟前
[ 前端性能优化 - 图片压缩 ] WebP格式的的图片性能到底有多优秀?
前端