MapReduce模拟统计每日车流量-解决方案
为了模拟每日的车流量,可以使用MapReduce模型来处理数据。具体步骤如下:
1.Map阶段:将原始数据分割成若干个小块,每个小块由一个Map任务处理。Map任务将小块中的每个数据项映射成为一个键值对,其中键为时间戳,值为车流量。
2.Shuffle阶段:将Map任务输出的键值对按照键进行排序,并将相同键的值合并在一起,形成一个新的键值对序列。
3.Recduce阶段:将Shuffle阶段输出的键值对按照键进行分组,每个Reduce任务处理一组数据。Reduce任务将组内的所有值相加,得到该时间戳下的总车辆。
使用Python编写一个简单的案例,用具模拟每日的车流量:
python
# Map函数
def map_func(line):
# 解析原始数据,获取时间戳和车流量
timestamp, traffic = line.split(',')
return (timestamp, int(traffic))
# Reduce函数
def reduce_func(key, values):
# 计算该时间戳下的总车流量
return (key, sum(values))
# 主函数
if __name__ == '__main__':
# 读取原始数据
with open('traffic.txt', 'r') as f:
lines = f.readlines()
# 执行MapReduce操作
mapped = map(map_func, lines)
shuffled = sorted(mapped)
grouped = itertools.groupby(shuffled, lambda x: x[0])
reduced = [reduce_func(key, [v[1] for v in values]) for key, values in grouped]
# 输出结果
for item in reduced:
print(item)
其中,原始数据存储在traffic.txt文件中,每行格式为"时间戳,车流量"。执行以上代码后,将输出每个时间戳下的总车流量。
使用Java语言,编写一个MapReduce模拟统计每日车流量:
java
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class TrafficCount {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private Text keyText = new Text();
private IntWritable valueInt = new IntWritable();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split(",");
String date = fields[0];
int traffic = Integer.parseInt(fields[1]);
keyText.set(date);
valueInt.set(traffic);
context.write(keyText, valueInt);
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
result.set(sum);
context.write(key, result);
}
}