MapReduce模拟统计每日车流量-解决方案

MapReduce模拟统计每日车流量-解决方案

为了模拟每日的车流量,可以使用MapReduce模型来处理数据。具体步骤如下:

1.Map阶段:将原始数据分割成若干个小块,每个小块由一个Map任务处理。Map任务将小块中的每个数据项映射成为一个键值对,其中键为时间戳,值为车流量。
2.Shuffle阶段:将Map任务输出的键值对按照键进行排序,并将相同键的值合并在一起,形成一个新的键值对序列。
3.Recduce阶段:将Shuffle阶段输出的键值对按照键进行分组,每个Reduce任务处理一组数据。Reduce任务将组内的所有值相加,得到该时间戳下的总车辆。

使用Python编写一个简单的案例,用具模拟每日的车流量:

python 复制代码
# Map函数
def map_func(line):
    # 解析原始数据,获取时间戳和车流量
    timestamp, traffic = line.split(',')
    return (timestamp, int(traffic))

# Reduce函数
def reduce_func(key, values):
    # 计算该时间戳下的总车流量
    return (key, sum(values))

# 主函数
if __name__ == '__main__':
    # 读取原始数据
    with open('traffic.txt', 'r') as f:
        lines = f.readlines()

    # 执行MapReduce操作
    mapped = map(map_func, lines)
    shuffled = sorted(mapped)
    grouped = itertools.groupby(shuffled, lambda x: x[0])
    reduced = [reduce_func(key, [v[1] for v in values]) for key, values in grouped]

    # 输出结果
    for item in reduced:
        print(item)

其中,原始数据存储在traffic.txt文件中,每行格式为"时间戳,车流量"。执行以上代码后,将输出每个时间戳下的总车流量。

使用Java语言,编写一个MapReduce模拟统计每日车流量:

java 复制代码
import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class TrafficCount {

    public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {

        private Text keyText = new Text();
        private IntWritable valueInt = new IntWritable();

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String line = value.toString();
            String[] fields = line.split(",");
            String date = fields[0];
            int traffic = Integer.parseInt(fields[1]);
            keyText.set(date);
            valueInt.set(traffic);
            context.write(keyText, valueInt);
        }
    }

    public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

        private IntWritable result = new IntWritable();

        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable value : values) {
                sum += value.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }
相关推荐
Mintopia1 分钟前
Next.js 全栈:接收和处理请求
前端·javascript·next.js
袁煦丞35 分钟前
2025.8.18实验室【代码跑酷指南】Jupyter Notebook程序员的魔法本:cpolar内网穿透实验室第622个成功挑战
前端·程序员·远程工作
Joker Zxc40 分钟前
【前端基础】flex布局中使用`justify-content`后,最后一行的布局问题
前端·css
无奈何杨43 分钟前
风控系统事件分析中心,关联关系、排行、时间分布
前端·后端
Moment1 小时前
nginx 如何配置防止慢速攻击 🤔🤔🤔
前端·后端·nginx
晓得迷路了1 小时前
栗子前端技术周刊第 94 期 - React Native 0.81、jQuery 4.0.0 RC1、Bun v1.2.20...
前端·javascript·react.js
江城开朗的豌豆1 小时前
React Native 实战心得
javascript
前端小巷子1 小时前
Vue 自定义指令
前端·vue.js·面试
玲小珑1 小时前
Next.js 教程系列(二十七)React Server Components (RSC) 与未来趋势
前端·next.js