MapReduce模拟统计每日车流量-解决方案

MapReduce模拟统计每日车流量-解决方案

为了模拟每日的车流量,可以使用MapReduce模型来处理数据。具体步骤如下:

1.Map阶段:将原始数据分割成若干个小块,每个小块由一个Map任务处理。Map任务将小块中的每个数据项映射成为一个键值对,其中键为时间戳,值为车流量。
2.Shuffle阶段:将Map任务输出的键值对按照键进行排序,并将相同键的值合并在一起,形成一个新的键值对序列。
3.Recduce阶段:将Shuffle阶段输出的键值对按照键进行分组,每个Reduce任务处理一组数据。Reduce任务将组内的所有值相加,得到该时间戳下的总车辆。

使用Python编写一个简单的案例,用具模拟每日的车流量:

python 复制代码
# Map函数
def map_func(line):
    # 解析原始数据,获取时间戳和车流量
    timestamp, traffic = line.split(',')
    return (timestamp, int(traffic))

# Reduce函数
def reduce_func(key, values):
    # 计算该时间戳下的总车流量
    return (key, sum(values))

# 主函数
if __name__ == '__main__':
    # 读取原始数据
    with open('traffic.txt', 'r') as f:
        lines = f.readlines()

    # 执行MapReduce操作
    mapped = map(map_func, lines)
    shuffled = sorted(mapped)
    grouped = itertools.groupby(shuffled, lambda x: x[0])
    reduced = [reduce_func(key, [v[1] for v in values]) for key, values in grouped]

    # 输出结果
    for item in reduced:
        print(item)

其中,原始数据存储在traffic.txt文件中,每行格式为"时间戳,车流量"。执行以上代码后,将输出每个时间戳下的总车流量。

使用Java语言,编写一个MapReduce模拟统计每日车流量:

java 复制代码
import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class TrafficCount {

    public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {

        private Text keyText = new Text();
        private IntWritable valueInt = new IntWritable();

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String line = value.toString();
            String[] fields = line.split(",");
            String date = fields[0];
            int traffic = Integer.parseInt(fields[1]);
            keyText.set(date);
            valueInt.set(traffic);
            context.write(keyText, valueInt);
        }
    }

    public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

        private IntWritable result = new IntWritable();

        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable value : values) {
                sum += value.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }
相关推荐
clownAdam37 分钟前
Chrome性能优化秘籍
前端·chrome·性能优化
@Kerry~41 分钟前
phpstudy .htaccess 文件内容
java·开发语言·前端
WebDesign_Mu2 小时前
为了庆祝2025英雄联盟全球总决赛开启,我用HTML+CSS+JS制作了LOL官方网站
javascript·css·html
洛克大航海2 小时前
Ubuntu安装Hbase
大数据·linux·数据库·ubuntu·hbase
笨手笨脚の2 小时前
Kafka-1 初识消息引擎系统
分布式·kafka·消息队列·消息引擎系统
@PHARAOH2 小时前
WHAT - 前端性能指标(交互和响应性能指标)
前端·交互
噢,我明白了2 小时前
前端js 常见算法面试题目详解
前端·javascript·算法
im_AMBER2 小时前
Web 开发 30
前端·笔记·后端·学习·web
学编程的小虎2 小时前
用 Python + Vue3 打造超炫酷音乐播放器:网易云歌单爬取 + Three.js 波形可视化
开发语言·javascript·python
Jonathan Star2 小时前
Webpack 打包优化与骨架屏结合:双管齐下提升前端性能与用户体验
前端·webpack·ux