用Flask搭建简单的web模型部署服务

目录结构如下:

分类模型web部署

classification.py

python 复制代码
import os
import cv2
import numpy as np
import onnxruntime
from flask import Flask, render_template, request, jsonify
 
 
app = Flask(__name__)


onnx_session = onnxruntime.InferenceSession("mobilenet_v2.onnx", providers=['CPUExecutionProvider'])

input_name = []
for node in onnx_session.get_inputs():
    input_name.append(node.name)

output_name = []
for node in onnx_session.get_outputs():
    output_name.append(node.name)


def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1] in set(['bmp', 'jpg', 'JPG', 'png', 'PNG'])


def preprocess(image):
    if image.shape[0] < image.shape[1]: #h<w
        image = cv2.resize(image, (int(256*image.shape[1]/image.shape[0]), 256))
    else:
        image = cv2.resize(image, (256, int(256*image.shape[0]/image.shape[1])))

    crop_size = min(image.shape[0], image.shape[1])
    left = int((image.shape[1]-crop_size)/2)
    top = int((image.shape[0]-crop_size)/2)
    image_crop = image[top:top+crop_size, left:left+crop_size]
    image_crop = cv2.resize(image_crop, (224,224))

    image_crop = image_crop[:,:,::-1].transpose(2,0,1).astype(np.float32)   #BGR2RGB和HWC2CHW
    image_crop[0,:] = (image_crop[0,:] - 123.675) / 58.395   
    image_crop[1,:] = (image_crop[1,:] - 116.28) / 57.12
    image_crop[2,:] = (image_crop[2,:] - 103.53) / 57.375

    return  np.expand_dims(image_crop, axis=0)  

 
@app.route('/classification', methods=['POST', 'GET'])  # 添加路由
def classification():
    if request.method == 'POST':
        f = request.files['file']
        if not (f and allowed_file(f.filename)):
            return jsonify({"error": 1001, "msg": "only support image formats: .bmp .png .PNG .jpg .JPG"})
 
        basepath = os.path.dirname(__file__)  # 当前文件所在路径
        upload_path = os.path.join(basepath, 'static/images/temp.jpg')  # 注意:没有的文件夹一定要先创建,不然会提示没有该路径
        f.save(upload_path)
 
        image = cv2.imread(upload_path)     
        tensor = preprocess(image)
        inputs = {}
        for name in input_name:
            inputs[name] = tensor   
        outputs = onnx_session.run(None, inputs)[0]
        label = np.argmax(outputs)
        score = np.exp(outputs[0][label]) / np.sum(np.exp(outputs), axis=1)
        
        return render_template('classification.html', label=label, score=score[0])
    
    return render_template('upload.html')
 
 
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=8000, debug=True)

classification.html

html 复制代码
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
</head>
<body>
    <h1>请上传本地图片</h1>
    <form action="" enctype='multipart/form-data' method='POST'>
        <input type="file" name="file" style="margin-top:20px;"/>
        <input type="submit" value="上传" class="button-new" style="margin-top:15px;"/>
    </form>
    <h2>图片类别为:{{label}}        置信度为:{{score}} </h2>
    <img src="{{ url_for('static', filename= './images/temp.jpg') }}"  alt="你的图片被外星人劫持了~~"/>
</body>
</html>

运行程序,在浏览器输入http://127.0.0.1:8000/classification,效果展示:

检测模型web部署

detection.py

python 复制代码
import os
import cv2
import numpy as np
import onnxruntime
from flask import Flask, render_template, request, jsonify
 
 
app = Flask(__name__)


class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush'] #coco80类别      
input_shape = (640, 640) 
score_threshold = 0.2  
nms_threshold = 0.5
confidence_threshold = 0.2   


onnx_session = onnxruntime.InferenceSession("yolov5n.onnx", providers=['CPUExecutionProvider'])

input_name = []
for node in onnx_session.get_inputs():
    input_name.append(node.name)

output_name = []
for node in onnx_session.get_outputs():
    output_name.append(node.name)


def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1] in set(['bmp', 'jpg', 'JPG', 'png', 'PNG'])


def nms(boxes, scores, score_threshold, nms_threshold):
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    areas = (y2 - y1 + 1) * (x2 - x1 + 1)
    keep = []
    index = scores.argsort()[::-1] 

    while index.size > 0:
        i = index[0]
        keep.append(i)
        x11 = np.maximum(x1[i], x1[index[1:]]) 
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        w = np.maximum(0, x22 - x11 + 1)                              
        h = np.maximum(0, y22 - y11 + 1) 
        overlaps = w * h
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
        idx = np.where(ious <= nms_threshold)[0]
        index = index[idx + 1]
    return keep


def xywh2xyxy(x):
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y


def filter_box(outputs): #过滤掉无用的框    
    outputs = np.squeeze(outputs)
    outputs = outputs[outputs[..., 4] > confidence_threshold]
    classes_scores = outputs[..., 5:]
     
    boxes = []
    scores = []
    class_ids = []
    for i in range(len(classes_scores)):
        class_id = np.argmax(classes_scores[i])
        outputs[i][4] *= classes_scores[i][class_id]
        outputs[i][5] = class_id
        if outputs[i][4] > score_threshold:
            boxes.append(outputs[i][:6])
            scores.append(outputs[i][4])
            class_ids.append(outputs[i][5])

    if len(boxes) == 0 :
        return      
    boxes = np.array(boxes)
    boxes = xywh2xyxy(boxes)
    scores = np.array(scores)
    indices = nms(boxes, scores, score_threshold, nms_threshold) 
    output = boxes[indices]
    return output


def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    
    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
    dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im


def scale_boxes(boxes, shape): 
    # Rescale boxes (xyxy) from input_shape to shape
    gain = min(input_shape[0] / shape[0], input_shape[1] / shape[1])  # gain  = old / new
    pad = (input_shape[1] - shape[1] * gain) / 2, (input_shape[0] - shape[0] * gain) / 2  # wh padding
    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
    return boxes


def draw(image, box_data):
    box_data = scale_boxes(box_data, image.shape)
    boxes = box_data[...,:4].astype(np.int32) 
    scores = box_data[...,4]
    classes = box_data[...,5].astype(np.int32)
   
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
        cv2.putText(image, '{0} {1:.2f}'.format(class_names[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)


def preprocess(img):
    input = letterbox(img, input_shape)
    input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)
    input = input / 255.0
    input = np.expand_dims(input, axis=0)
    return input
 
 
@app.route('/detection', methods=['POST', 'GET'])  # 添加路由
def detection():
    if request.method == 'POST':
        f = request.files['file']
        if not (f and allowed_file(f.filename)):
            return jsonify({"error": 1001, "msg": "only support image formats: .bmp .png .PNG .jpg .JPG"})
 
        basepath = os.path.dirname(__file__)  # 当前文件所在路径
        upload_path = os.path.join(basepath, 'static/images/temp.jpg')  # 注意:没有的文件夹一定要先创建,不然会提示没有该路径
        f.save(upload_path)
 
        image = cv2.imread(upload_path)     
        tensor = preprocess(image)
        inputs = {}
        for name in input_name:
            inputs[name] = tensor   
        outputs = onnx_session.run(None, inputs)[0]
        
        boxes = filter_box(outputs)
        if boxes is not None:
            draw(image, boxes)
        cv2.imwrite(os.path.join(basepath, 'static/images/temp.jpg'), image)
        
        return render_template('detection.html')
    
    return render_template('upload.html')
 
 
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=8000, debug=True)

detection.html

html 复制代码
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
</head>
<body>
    <h1>请上传本地图片</h1>
    <form action="" enctype='multipart/form-data' method='POST'>
        <input type="file" name="file" style="margin-top:20px;"/>
        <input type="submit" value="上传" class="button-new" style="margin-top:15px;"/>
    </form>
    <img src="{{ url_for('static', filename= './images/temp.jpg') }}"  alt="你的图片被外星人劫持了~~"/>
</body>
</html>

运行程序,在浏览器输入http://127.0.0.1:8000/detection,效果展示:

相关推荐
Mryan20054 分钟前
✨ 使用 Flask 实现头像文件上传与加载功能
后端·python·flask
程序员是干活的10 分钟前
Java EE前端技术编程脚本语言JavaScript
java·大数据·前端·数据库·人工智能
南囝coding32 分钟前
Coze 开源了!所有人都可以免费使用了
前端·后端·产品
CDwenhuohuo34 分钟前
滚动提示组件
java·前端·javascript
chaofan98039 分钟前
ERNIE-4.5-0.3B 实战指南:文心一言 4.5 开源模型的轻量化部署与效能跃升
人工智能·开源·文心一言
说码解字40 分钟前
Kotlin 内联函数
前端
hppyhjh41 分钟前
【昇腾CANN训练营】深入cann-ops仓算子编译出包流程
人工智能
飞凌嵌入式41 分钟前
飞凌嵌入式亮相第九届瑞芯微开发者大会:AIoT模型创新重做产品
人工智能·嵌入式硬件·嵌入式·飞凌嵌入式
PineappleCoder41 分钟前
性能优化与状态管理:React的“加速器”与“指挥家”
前端·react.js
大模型工程师41 分钟前
TongYiLingMa插件下Qwen3-Coder
人工智能